TM 11-5820-398-35

DEPARTMENT OF THE ARMY TECHNICAL MANUAL

FIELD AND DEPOT
MAINTENANCE MANUAL
RADIO SET AN/PRC-25

HEADQUARTERS, DEPARTMENTAFAHEARMY 8 JANUARY 1963

WARNING

DANGEROUS VOLTAGES EXIST IN THIS EQUIPMENT

When Receiver-Transmitter, Radio RT-505/PRC-25 is in a transmit condition, 45 volts dc and 125 volts dc are generated in module AI and applied to transmitter power amplifier V1. The 45 -volt potential is also applied to modules A6 and A7. Take all necessary precautions.

DON'T TAKE CHANCES!

CAUTION
This equipment is transistorized. Before connecting test equipment within the modules, insulate test prods and clips with insulating tape or sleeving. Leave an absolute minimum of exposed metal, and be extremely careful to avoid short circuits; they may cause extensive damage. Do not make resistance measurements unless specifically directed to do so.

Field and Depot Maintenance Manual

RADIO SET AN/PRC-25
$\left.\begin{array}{l}\text { Change } \\ \text { No. } 1\end{array}\right\}$

HEADQUARTERS
DEPARTMENT OF THE ARMY
Washington, D.C., 17 September 1964
TM 11-5820-398-35, 8 January 1963, is changed as follows:

Page 3, paragraph 1. Delete subparagraph c.
Add paragraph 1.1 after paragraph 1.

I.I. Reporting of Equipment Manual Improvements

The direct reporting, by the individual user, of errors, omissions, and recommendations for improving this manual is authorized and encouraged. DA Form 2028 (Recommended Changes to DA Publications), will be used for reporting these improvements. This form will be completed in triplicate with pencil, pen, or typewriter. The original and one copy will be forwarded to Commanding General, U. S. Army Electronics Command, ATTN: AMSEL-MR-MP-P, Fort Monmouth, N.J. 07708. One information copy will be furnished to the individual's immediate supervisor (offlicer, noncommissioned officer, supervisor, etc.).
Page 2, figure 1. Make the following changes:
Near C10, add: (NOTE 5).
Near L2, add: (NOTE 6).
Add the following notes after note 4.
6. IN LATE MODELS, THE VALUE OF C10 IS 120 UUF.
6. IN LATE MODELS, L2 IS REPLACED WITH A 33-0HM RESISTOR, R5.
Page 10, figure 2. Make the following changes:

Near L2, add: (NOTE б).
Add the following note after note 4: 5. IN LATE MODELS, L2 IS REPLACED WITH A 33-OHM RESISTOR, RE.
Page 11, figure 3. Make the following changes:

Change the value of R1 from 270 to 10 ohms.
Near R3, add: (NOTE 4).
Near R4, add: (NOTE 5).
Add the following notes after note 8.
4. IN LATE MODELS, THE VALUE OF RS IS 1,000 OHMS.
b. IN LATE MODELS, R4 IS DELETED.
Page 14, figure 5. Make the following changes:

Change the value of C 7 from 11 to 0.22μ.
Delete the connection between the emitter of $Q 5$ and the +10 V regulated input.
Near R12, add: (NOTE 5).
Add the following note after note 4.
5. IN SOME MODULES, THE VALUE OF R12 IS 37.4 K OHMS.
Change the figure caption to Tone squelch module A24, early model, schematic diagram.
Add flgure 5.1 after figure 5 :

Figure 5.1. Tone squeleh module A24, late model, schematic diagram.

> Page 15. figure 6. Make the following changes:

> Change the value of $\mathrm{R17}$ from 1,800 to 1,500 ohms.
> Change the value of R18 from 15 to 220 ohms.

> Page 16. Delete paragraph 13 and substitute:

13. Tone Generator Module A23 (Early Model) (fig. 7)

The tone generator functions only during transmission. The $150-\mathrm{cps}$ output tone is applied to speech amplifier limiter module A22 (para. 12) which modulates the transmitter output signal with the tone at all times during transmission. The $150-\mathrm{cps}$ tone controls the squelch circuit in the distant receiver.
a. Transistor Q1 is a grounded collector phase-shift oscillator, and transistor Q2 is a grounded emitter amplifier. Feedback from the collector of Q2 through a phase-shift network to the base of Q1 sustains oscillation. The oscillator frequency is determined by the resistancecapacitance phase-shift network consisting of capacitors C1, C2, and C3, and three resistance paths: R1; R4 and R3; and R7, R6, and RT2. Each of the capacitors provides a phase shift of 60° for a total of 180°. Potentiometer R3 is a frequency adjustment. Thermistor RT2 prevents frequency variations due to temperature variations. Resistor R13 reduces the base current of Q1. Resistor R8 is the emitter load resistor for Q1; the output at the emitter of Q1 is applied direct to the base of Q2. The combination of R6, RT2, R7, R5, and R12 forms a voltage divider which provides base-to-emitter bias for Q1.
b. The collector load for feedback amplifier Q2 is resistor R11 in series with potentiometer R12. Potentiometer R12 controls the module output amplitude. Emitter bias for Q2 is developed across R8; C4 is the emitter bypass capacitor. A portion of the output of $\mathbf{Q 2}$ is applied from the top of R12, through feedback resistor R5, to the input circuit of Q1. This negative feedback stabilizes the operation of Q1.
c. Resistor R14 and capacitor C5 form a filter network in the +10 -volt line. The +10 Folt input is applied to A23 during transmis-
sion. The output signal from A23 can be measured at test point J3.

Add paragraph 13.1 after paragraph 13.

13.I. Tone Generator Module A23 (Late Model)
 (fig. 7.1)

Tone oscillator Q1 is a Wien-bridge oscillator. Emitter follower Q2 isolates feedback amplifier Q3 from tone oscillator Q1. Feedback amplifier Q3 furnishes output signal and feedback for tone oscillator Q1.
a. Feedback to sustain oscillation is applied from the collector of Q3 to the bridge circuit of Q1. One leg of the positive feedback circuit is composed of R7 and C1. The other is composed of R3, R2 in parallel with RT1, and R1 connected in parallel with C2. The feedback voltage applied to the base of Q1 is of the proper phase relationship to sustain oscillation at only one frequency. The values of the components in the feedback circuit determine the oscillator frequency. Negative feedback is applied through coupling capacitor C3 and resistor R8 to the emitter of Q1. This negative feedback voltage greatly increases the stability of Q1. Resistor R5 is the other leg of the bridge Potentiometer R1 is a frequency adjustment for the tone oscillator circuit. Thermistor RT1 compensates for temperature variations. Resistor R4 is part of the base-biasing circuit for Q1. The 150 -cps output is taken from the collector of Q1 and applied through R9 to the base of emitter follower Q2. Resistor R9 and capacitor C4 shift the phase of the signal to compensate for the phase shift in the coupling circuits between the other stages.
b. The output of $\mathbf{Q 2}$ is taken from emitter load resistor R10 and applied through coupling capacitor C 5 to the base of feedback amplifier Q3.
c. Feedback amplifier $\mathbf{Q 3}$ is a common-emitter amplifier. The output developed across collector load resistor R14, in parallel with R15, is applied as feedback to Q1. The output taken from the moving contact of output amplitude control R15 is applied to modules A22 and A24. Resistor R16 and capacitor C8 from an rf filter
on the $150-\mathrm{cps}$ output line. Emitter bias for Q3 is developed across R13. Capacitor C6 is the emitter bypass capacitor. Base bias for Q3 is established by resistors R11 and R12.
d. Resistor R17 and capacitor C7 form a filter on the +10 -volt line. The $150-\mathrm{cps}$ output of A23 can be measured at test point J3.

Delete figure 7 and substitute new figure 7.

Figure 7. Tone generator module Ass, sarly model, schematio diagram.
After figure 7, add figure 7.1.

Figure 71. Tone generator module A2s, late model, echematic diagram.

Page 18. figure 8. Make the following changes:

Near C9, add: (NOTE 5).
Add the following note after note 4.
5. IN LATE MODELS, THE VALUE OF C9 IS 27 UF.
Paragraph 15a(3). After the first sentence, add: In late models, thermistor RT1 is connected parallel to R2 to prevent oscillator frequency instability due to temperature variations.
Page 20, figure 10. Make the following changes:

Near R16, add: (NOTE 4).
Near R2, add: (NOTE 5).
Add the following notes after note 3 :
4. IN LATE MODELS, THE VALUE OF R16 IS 150 OHMS.
5. IN LATE MODELS, THE VALUE OF R2 IS 4,700 OHMS, AND A $30.65 \mathrm{~K}-\mathrm{OHM}$ THERMISTOR, RT1, IS CONNECTED PARALLEL TO R2.
Page 21, figure 11. Make the following changes:

Near the primary of T1, add: (NOTE 5).
Add the following note after note 4:
5. IN LATE MODELS, AN 8-UUF CAPACITOR, C1, IS CONNECTED BETWEEN PINS 1 AND 2 OF J1.
Page 22, figure 12. Change the value of R1 from 820 to 390 ohms.
Page 24 figure 13. Add a $1,000-\mathrm{ohm}$ resistor, R4, between pins 1 and 5 of J .

Page 26, figure 15. Make the following changes:

Near C5, add: (NOTE 5).
Add the following note after note 4:
5. IN LATE MODELS, C5 IS OMITTED.
Page 27, figure 17. Make the following changes:

Near C4, add: (NOTE 4).
Add the following note after note 3.
4. IN LATE MODELS, THE VALUE OF C4 IS 120 UUF.
Page 31 figure 19. Add a 560 -ohm resistor, R19, across the secondary of T3.

Page 35, paragraph 27. After subparagraph b, add subparagraph c.
c. Late Models (fig. 22.1). In late models, a filter composed of inductor L3 and capacitor C 12 is placed in the +10 -volt line. Swamping resistor R11 is included in the emitter circuit of Q1, and collector current limiting resistor R12 is included in the collector circuit of Q2. Capacitor C3 and resistors R4, R8, and R9 are omitted.

Figure 21. Make the following changes:
Near R4, add: (NOTE 4).
Near R6, add: (NOTE 5).
Add the following notes after note 3.
4. IN LATE MODELS, THE VALUE OF R4 IS 33K OHMS.
5. IN LATE MODELS, THE VALUE OF R6 IS 56 OHMS.
Page 34. figure 22. Change the figure caption to: Fss IF amplifier module A18, early model, schematic diagram.

Add figure 22.1 after figure 22.

Figure 2e.1. Fes IF amplifier module A18, late model, schomatic diagram.

Page 35 figure 23. Make the. following changes:

Near C1, add: (NOTE 4).
Add the following note after note 3 .
4. IN LATE MODELS, A $560-0 \mathrm{HM}$ RESISTOR, R8, IS CONNECTED IN SERIES WITH THE LEAD FROM C1 TO PIN B OF J1.
Page 37 figure 24. Make the following changes:

Delete R13.
Change the value of R5 from 82 K ohms to 47 K ohms.

Change the value of R 7 from 82 K . ohms to 47 K ohms.
Paragraph 30. After the last sentence of the paragraph, add: In late models (fig. 25.1), potentiometer R6 is connected across CR2 to permit adjustment of the voltage applied to the base of Q2. This provides a fine adjustment of the regulated output voltage.
Page 38, figure 25. Change the figure caption to: Voltage regulator module A16, early model, schematic diagrum.

Add figure 25.1 after figure 25.

1. UNLESS OTHERWISE INDICATED, RESISTANCES ARE IN OHMS, CAPACITANCES ARE IN UF.
2. REFERENCE OESIGNATIONS ARE ABGREVIATED. PREFIX THE PART DESIGNATION WITH AIG, EXCEPT JII.
3. CONNECTOR VIEWED FROM PIN OR RECEPTACLE SIDE.

Figure 25.1. Voltage regulator module A16, late model, schematic diagram.

Page 43 paragraph $36 a$, chart, Test equipment column, last line. After "RF Millivoltmeter", add: Hewlett Packard Co.
Page 106, paragraph 69a chart, Item column. Make the following changes:

Two lines from bottom. After "RF Millivoltmeter", add: Hewlett Packard Co.
Bottom line. After "Transistor Power Supply", add: Hewlett Packard Co.
Paragraph 70c(4). In line 3 of the caution, change "with" to: without.
Page 107, paragraph 72. Make the following changes:

Subparagraph $a(6)$, line 2. Change " 30 000" to: 30.000 .
Subparagraph $b(9)$, line 4. Change " 3 -db" to : $6-\mathrm{db}$.
Subparagraph b (11), line 3. Change "-3.0 db " to: -6.0 db ; and change• " $3-\mathrm{db}$ " to: 6 -db.
Page 109, paragraph 72b. Make the following changes :

Subparagraph (14), line 4. Change " 3 -db" to: $6-\mathrm{db}$.
Subparagraph (16), line 4. Change " 3 -db" to : 6-db.

Page 132, paragraph 85b. Add subparagraph (5) after subparagraph (4).
(5) If the voltage measured in (3) above is incorrect in a late model module A16, adjust R6 (fig. 68.1) for the correct output voltage.

Figure 68, caption. Change the caption to: Module A16, early model, parts location.
Add figure 68.1 after figure 68.

Figure 68.1. Module A16, late model, parts location.

Page 135, figure 70, caption. Change the figure caption to: Module A18, early model, parts location.

Add figure $\mathbf{7 0 . 1}$ after figure 70.

Figure 70.1. Module A18, late modol, parts location.

Page 142, figure 75. Delete figure 75 and substitute new figure 75.

Figure 75. Module Aes, early model, parts location.

Add figure 75.1 after figure 75.

Figure 75.1. Module A29, late model, parts location.

Page 161, figure 85. Make the following changes:

Move test point TP from the collector of Q5 to the collector of Q4.

Near C21, add: (NOTE 4).
Add the following note after note 3 .
4. IN LATE MODELS, THE VALUE OF C21 IS 0.5 UUF.

Page 169 , appendix. Add the following reference to the appendix:
TM 11-5820-497-35P Field and Depot Maintenance Repair Parts and Special Tool Lists: ReceiverTransmitters, Radio RT-505/PRC-25 and RT-505A/PRC-25.

By Order of the Secretary of the Army:

Official:
J. C. LAMBERT,

Major General, United States Army, The Adjutant General.

Distribution:

```
Active Army:
    USASA (2)
    CNGB (1)
    CofT (1)
    CofEngr: (1)
    TSG (1)
    CofSpts (1)
    OCC-E (7)
    USAARMBD (2)
    USAARTYBD (2)
    USAIB (2
    USACSTATC (5)
    USAMC (5)
    USAECOM (7)
    USAMICOM (4)
    USASMCOM (2)
    USASCC (4)
    USACDC Agencie: (1)
    USCONARC (5)
    ARADCOM (2)
    ARADCOM Rgn (2)
    OS Maj Comd (8)
    OS Base Comd (2)
    LOGCOMD (2)
    Armies (2)
    Corp: (2)
    USA Corp& (8)
    GENDEP (OS) (2)
    Sig Sec GENDEP (OS) (5)
    Sig Dap (0S) (12)
    A Dap (2 excopt
        Loxington }1
        Sacramento (28)
        Tobyhanna (12)
        Ft Worth (8)
        Lotterkenny (B)
        Sharpe (8)
        Navajo (5)
        Savanna (5)
        Charlenton (8)
    Svc Colleges (2)
    Br Sve Sch (2) except
        USASESCS (100)
```

 NG: State AG (8).
 USAR: None.
 For explanation of abbreviations used, see AR 320-50.

Change:
 No. 2

HEADQUARTERS
DEPARTMENT OF THE ARMY
Washington, D. C., 22 April 1965

Field and Depot Maintenance Manual RADIO SET AN/PRC-25

TM 11-5820-398-35, 8 J anuary 1963, is changed as follows:

Note. The parenthetical reference to previous changes (example: page 1 of $C 1$) indicates that pertinent material wae published in that change.

Page 3, paragraph 1.1 (page 1 of $C 1$). Change "AMSEL-MR-MP" to: AMSEL-MR-(NMP)MA.

Page 7, paragraph $6 \mathrm{~b}(\mathrm{I})$, line 3. Change (fig. 1) to (fig. 88).

Page 10, figure 2 (page 1 of $C 1$). After note 5 , add note 6.
6. IN LATER EQUIPMENT BEARING ORDER NO. 64009-PP-63, CAPACITOR C2 HAS BEEN OMITTED.

Page 11, figure 3 (page 1 of C 1). After note 5, add note 6 .
6. IN LATER EQUIPMENT BEARING ORDER NO. 64009-PP-63, R4 IS 68 OHM3 AND A MODULE GROUND STRAP HAS BEEN ADDED.

Page 14, figure 5.1 (page 2 of C 1). Make the following changes:

Near R12, add (NOTE 4).
After note 3, add note 4:
4. IN LATER EQUIPMENT BEARING ORDER NO. 64009-PP-63, THE VALUE OF R12 HAS BEEN FACTORY SELECTED AND MAY BE 37.4K, 38.3K, OR 39.2K $\pm 1 \%$.

Page 43, paragraph $36 a$, (page 8 of C 1) chart. Delete the last line and substitute: RF Millivoltmeter, Hewlett-Packard Model HP411A.
Page 56, figure 31. Add the following note:
Note. ON EQUIPMENT BEARING ORDER NO. 64009-PP-63, SWITCHES S2 AND S3 HAVE BEEN OMITTED.

Page 60, paragraph 44, heading. After the heading, add the following note.
Note. On equipment bearing Order No. 64009-PP-63, switches S2 and S3 are omitted. Removal of module Al 1, A17, A19, or A20 provides the same result as depressing switches S2 and S3.

Page 71, paragraph 56c chart, Performance standard column. Make the following changes:

Step No. 1: Change 2 watts to 1.6 watts.
2: Change 1,5 watts to 1.1 watts.

Page 91, paragraph 63c, chart, Performance slandard column. Make the following changes: Step No. 1d: Change 300 kc to 250 kc .
1g: Delete and substitute-1?requency should be at least 250 kc below 31.50 mc . The difference between the upper and lower frequency indications should be at least 650 kc .
Page 105, paragraph 67, chart, Performance standard column. Make the following changes:

Item $l a, b$, and c : Change 2 to 1.6.
$l d, e$, and f : Change 1.5 to 1.1 . $8 a$ and b : Change 300 to 250.
After Item 8, add the following note.
Note. The difference between the two frequency indications should be at least 650 kc .

Figure 61.1. Module A9, Order No. 64009-PP-63, improved module, parts location.

Page 151. Add chapter 6 after figure 79:

CHAPTER 6
 DEPOT INSPECTION STANDARDS

98. Applicability of Depot Inspection Standards

The tests outlined in this chapter are designed to measure the performance and capability of a repaired Radio Set AN/PRC-2.5. Equipment that meets the minimum standards stated in the tests will furnish satisfactory operation, equivalent to that of new equipment.

99. Applicable References

a. Repair Standards. Applicable procedures of the U.S. Army depot performing this test, and the depot standards for repaired signal equipment, form a part of the requirements for testing this equipment.
b. Technical Publications. The following technical publications are applicable to Radio Set AN/PRC25:
(1) TM 11-5820-398-10, Operator's Manual.
(2) TM 11-5820-398-20, Organizational Maintenance Manual.
(3) TM 11-5820-398-35P, Field and Depot Maintenance Repair Parts and Special Tools List.
(4) TM 11-5820-497-35P, Field and Depot Maintenance Repair Parts and Special Tools List, Receiver-Transmitters, Radio RT-505/PRC-25 and RT-505A/PRC-25.
c. Modification Work Orders. Perform all applicable Modification Work Orders pertaining to Radio Set AN/PRC-25 before making the tests specified. DA Pam 310-4 lists all available MWO's.

100. Test Facilities Required

The following equipment, or suitable equivalents, will be employed in determining compliance with the requirements of this Specific Standard.
a. Test Equipment.

Equipment	Federal stock No.remuired ${ }^{\text {Quantity }}$		Technical manual.
Audio oscillator, Hewlett-Packard Model HP-200AB	6625-519-2384	1	
Signal Generator, F. M., Marconi Model 1066A		1	
Voltmeter, Meter ME-30A/U	6625-669-0742	1	TM 11-6625-320-12
Frequency Meter AN/USM-26-	6625-692-6553	1	TM 11-5057
Spectrum Analyzer TS-723A/U	6625-668-9418		TM 11-5097
Oscilloscope AN/USM-50A	6625-668-4676	1	TM 11-5129
Modulation Meter ME-57/U	6625-647-3737	1	TM 11-6625-400-12
Multimeter ME-26B/U	6625-542-6407	1	TM 11-6625-200-12
RF Wattmeter AN/URM-43A	6625-635-9186	1	TM 11-5133
Signal Generator AN/USM-44	6625-669-4031	,	TM 11-6625-508-10
RF Millivoltmeter Hewlett-Packard Model HP-411A	-------------	1	
Power Supply, Trygon Model T20-2--	-------------	2	

b. Additional Equipment.

	Federal stock No.	Quantity
Enclosure, Electromagnetic, Shielding MX-1761/C	4940-542-0002	1
Tool Kit, Radar and Radio Repairman TK-87/U	5180-690-4452	1
Test Assembly, consisting of: (See fig. 79.6 for fabrication details.)		
Lamp, indicator, with push-to-test feature, 12 volts		1
Connector, Methode Type No. SM-C-454687-	-------------	1
Resistor, 150 ohms $\pm 5 \%$, 1 watt, fixed, composition	5905-683-2243	1
Resistor, 1,000 ohms $\pm 1 \%$, 1 watt, fixed, composition	5905-892-6330	1
Resistor, 10,000 ohms $\pm 5 \%$ variable, linear taper, composition	5905-892-6542	1
Resistor, 15,000 ohms $\pm 5 \%$, 1 watt, fixed, composition	5905-102-2824	1

EquipmentFederal stock 'No
Quantily
required
Switch, toggle, single-pole, single-throw 5930-655-15171
Barrier terminal block, Cinch Jones type No. 2-172-Y (2 terminals) 1
Barrier terminal block, Cinch Jones type No. 8-172-Y (8 terminals)
Cable, coaxial, type RG-58A/U
Wire, stranded AWG No. 18
6145-542-6092 8 ft
Knob, control6145-160-529116 ft
Chassis, aluminum (5 in. by $91 / 2 \mathrm{in}$. by 2 in . suggested nominal size) 1
Receiver Dummy Antenna consisting of: (See fig. 79.4 for fabrication details.)
Resistor, $51.1 \mathrm{ohms} \pm 1 \%, 1$ watt, deposited carbon 5905-722-18041
Resistor, 31.6 ohms $\pm 1 \%$, 1 watt, deposited carbon 5905-722-1805 1
Connector UG-657/U 5935-511-6618 2
Adapter, Connector UG-491A/U 5935-259-7463 1
Aluminum container $23 / 4 \mathrm{in}$. by $21 / 8 \mathrm{in}$. by $15 / 8 \mathrm{in}$. -..---....-.-- 1
Wire, stranded AWG No. 18 6145-160-5291 As
required
Transmitter Dummy Loads (See fig. 79.5 for fabrication details.)
Long Antenna Loads for the specified frequencies as follows:
30.0 mc -Resistor, 130 ohms $\pm 1 \%, 1$ watt, deposited carbon5905-060-41531
52.5 mc -Resistor, $619 \mathrm{ohms} \pm 1 \%, 1$ watt, deposited carbon 5905-581-1009 1
53.5 mc -Resistor, $400 \mathrm{ohms} \pm 1 \%, 1$ watt, deposited carbon 5905-818-7164 1-Capacitor, $8 \mu \mu \mathrm{f} \pm 5 \% 400 \mathrm{vdc}$
75.0 mc -Resistor, 82 ohms $\pm 1 \%$, 1 watt, deposited carbon 5905-655-3881 1
-Capacitor, $68 \mu \mu \mathrm{f} \pm 5 \%, 400 \mathrm{vdc}$ 5910-615-9812 1
Short Antenna Loads for the specified frequencies as follows: 30.0 mc -Resistor, 26.1 ohms $\pm 1 \%$, 1 watt, deposited carbon 5905-059-8157 1
-Capacitor, $12 \mu \mu \mathrm{f} \pm 5 \%, 400 \mathrm{vdc}$ 5910-806-2716 1
52.5 mc and 53.3 mc
-Resistor, $\mathbf{5 6 . 2} \mathbf{~ o h m s} \pm 2 \%$, 1 watt, deposited carbon 5905-817-60491
-Capacitor, $18 \mu \mu \mathrm{f} \pm 5 \%, 400 \mathrm{vdc}$ 5910-823-1971 1
75.0 mc -Resistor, $61.9 \mathrm{ohms} \pm 1 \%$, 1 watt, deposited carbon 5905-756-0425 1
-Capacitor, $82 \mu \mu \mathrm{f} \pm 5 \%, 400 \mathrm{vdc}$ 5910-553-7147 1
Adapters, Antenna Load (See fig. 79.5 for fabrication details.)
No. 1 1
No. 2 1
5935-201-2411 Adapter, "T", UG-274/U 1
Attenuator, Adjustable "T", General Radio type GR-874-GA 1
Decoupling Tool; sheet metal 1 in. by 4 in., by 0.018 in. to 0.035 in. (20 to 26 gage) 1
Test Cable No. 1, (fig. 79.1) consisting of: 1
Clip, electrical, alligator style 1
5940-186-9835
Plug, pin (test lead probe)1
Wire, stranded AWG No. 18 6 in.
Test Cable No. 2 (fig. 79.1) consisting of:Cable RG-58A/U6145-542-6092 $\quad 6 \mathrm{ft}$
Connector UG-88/U
Connector UG-88/U
Connector, General Radio type GR-874-C58A
5935-149-4066 2 2
Test Cable No. 3 (fig. 79.1) consisting of: Cable RG-58A/U6145-542-60923 ft
Connector UG-21B/U 5935-149-4236 1
Connector, General Radio type GR-874-C58A 1
Test Cable No. 4 (fig. 79.2) consisting of: 4
Cable RG-58A/U 6145-542-6092 16 ft
Lugs, spade 16
Test Cable No. 5 (fig. 79.2) consisting of:Cable RG-58A/U6145-542-6092 3 ft
Connector UG-88/U 5935-149-4066ft
Lugs, spade 2
Test Cable No. 6 (fig. 79.2) consisting of: 1
Cable RG-58A/U$6145-542-6092$
Connector UG-88/U 5935-149-4066
Insulating Terminal Board, 1 in. by 2 in . by $1 / 6 \mathrm{in}$.3 ft1
Resistor, 15,000 ohms $\pm 5 \%$, 1 watt 5905-537-64581

Equipment	Federal stock No.	Quantity required
Capacitor, $0.05 \mu \mathrm{f} \pm 10 \%$, 400 vdc		1
Wire, stranded AWG No. 18.	6145-160-5291	As
		required
Lugs, spade		2
Test Cable No. 7 (fig. 79.3) consisting of:		4
Wire, stranded AWG No. 18.	6145-160-5291	16 ft
Lugs, spade.	-.............	8
Test Cable No. 8 (fig. 79.3) consisting of:		1
Cable RG-58A/U.	6145-542-6092	3 ft
Insulating Terminal Board, 1 in . by 2 in . by ${ }^{1 / 16} \mathrm{in}$.		I
Capacitor, $0.1 \mu \mathrm{f} \pm 10 \%$, 400 vdc	5910-161-5264	1
Wire, stranded AWG No. 18	6145-160-5291	As
		required
Lugs, spade		4
Test Cable No. 9 (fig. 79.3) consisting of:	--------.-.--	2
Cable, RG-58A/U	6145-542-6092	6 ft
Connectors, UG-88/U	5935-149-4236	4
Handset H-138/U.	5965-892-0972	1

TEST CABLE NO. I

TEST CABLE NO. 2

Figure 79.1. Test cables No. 1, No. 2, and No. 3.

TEST CABLE NO. 6
TM5820-398-35-C2-4

Figure 79.2. Test cables No. 4, No.5, and No.6.

Figure 79.3. Test cables No. 7, No. 8, and No. 9.

A. SCHEMATIC DIAGRAM

B. WIRING DIAGRAM

NOTES

I. PLACE ASSEmbly in an aluminum can approximately 6 INCHES BY 2.5 INCHES BY 2.5 INCHES.
2. ALL WIRING IS WIRE, STRANDED, AWG NO. II.

TM5820-398-35-C2-6

Figure 79.4. Receiver dummy antenna, schematic and wiring diagrame.

Figure 79.6. Transmitter dummy load adapters, fabrication and connection details.

Figure 79.6. Test assembly, schematic/wiring diagram.

101. General Test Requirements

Most of the tests will he performed under the conditions listed below and illustrated in figure 79.7 (for the receiver system tests) and in figure 79.8 (for the transmitter system tests). Testing will be simplified if preliminary standard control settings are made initially and changes from these settings are then made as required for the individual tests. Perform all tests in Enclosure, Electromagnetic Shielding MX-1761/C (or equivalent). Do not apply power to the equipment under test until all test connections are made and the power supply output voltages are set.

Caution: When adjusting the power supply output voltages, do not exceed 3 volts and 15 volts.
a. Remove the shorting cap from POWER connector J3 on the front panel of the RT-505/PRC-25.
b. Loosen and disengage the four captive screws that hold the case to the front panel of RT-505/ PRC-25. Remove the case.
c. Connect the RT-505/PRC-25 into the applicable test setup (fig. 79.7 for receiver system tests and fig. 79.8 for transmitter system tests).
d. Apply power to the RT-505/PRC-25 and allow sufficient stabilization (warmup) time for the test equipment. Five minutes is adequate for the RT-505/PRC-25.
e. All specified signal levels apply to the signal at the RT-505/PRC-25 input and not at the signal generator output. The dummy load used in the receiver test setup reduces the rf voltage delivered at the coaxial ANT connector to half of the signal generator output attenuator setting (6 db loss).
f. The oscilloscope used in test setups is included for the convenience of maintenance personnel, but is not necessary to perform the tests. It provides a convenient output indication for both receiver and transmitter tests.
$g . \ln$ all receiver tests, set the signal Generator F. M. Marconi Model 1066A (1066A) frequency to produce minimum distortion (as read on the TS$723 \mathrm{~A} / \mathrm{U}$) before making any readings.
h. To avoid audio ground loops, do not ground Audio Oscillator Hewlett-Packard Model HP-200AB (HP-200AB) output to the common ground at any point.
102. Receiver Test Setup
(fig. 79.7)
a. Plug the test assembly connector PL into POWER connector J3 on the front panel of the RT-505/PRC-25.
b. Connect a test cable No. 7 from ground of power supply $\mathrm{A}(2.5$ volts $)$ to terminal D of test assembly terminal board TB1.
c. Connect a test cable No. 7 from the positive output of power supply A (2.5 volts) to terminal E of test assembly terminal board TB1.
d. Connect a test cable No. 7 from ground of power supply B (12.5 volts) to terminal D of test assembly terminal board TB1.
e. Connect a test cable No. 7 from the positive output of power supply B (12.5 volts) to terminal F of test assembly terminal board TB 1.
f. Connect a test cable No. 4 from the AF input terminal of TS-723A/U (shield to ground) to terminals C and D (shield) of test assembly terminal board TB1.
g. Connect a test cable No. 4 from the audio input terminals to the meter terminals of the TS723A/U.
h. Connect a test cable No. 4 from the af input terminals of the TS-723A/U to the vertical input of the AN/USM-50A.
i. Connect the receiver dummy antenna to the RT-505/PRC-25 coaxial ANT jack J2. Use Adapter, Connector UG-491A/U for connection to ANT jack J2.
j. Connect test cable No. 9 from the receiver dummy antenna to the 1066A RF input.
k. Connect test cable No. 8 from the 1066A external modulation input to the HP-200AB audio output.
l. Connect test cable No. 5 from the HP-200AB audio output to the AN/USM-26 signal input.
m . Do not turn on the RT-505/PRC-25. Turn on all test equipment and allow sufficient warmup time.
n. Adjust power supply A to 2.5 volts and power Supply B to 12.5 volts.
o. Set the RT-505/PRC-25 function switch to ON and select a frequency of 41.00 mc . Allow 5 minutes to warmup.
p. Adjust the 1066A to produce an RF output of 41.00 mc at a 20 -microvolt level with $10-\mathrm{kc}$ deviation at $1,000-\mathrm{cps}$ modulation frequency.
Note. The dummy antenna used in series with the 1066A output provides 6 db of attenuation. The actual RF level delivered at the RT-505/PRC-25 coaxial ANT input is 10 microvolt when the 1066 A output attenuator is set to 20 microvolt.
q. Adjust the RT-505/PRC-25 VOLUME control to produce a l-volt reading on the TS-723A/U (used as a vacuum-tube voltmeter).
v. Perform the receiver system tests indicated in paragraph 104.

Figure 79.7. RT-505/PRC-25, receiver test setup.

103. Transmitter Test Setup

(fig. 79.8)
a. Plug the test assembly connector into POWER connector J3 on the front panel of the RT-505/ PRC-25.
b. Connect a test cable No. 7 from ground of power supply A (2.5 volts) to terminal D of test assembly terminal board TB1.
c. Connect a test cable No. 7 from the positive output of power supply A (2.5 volts) to terminal E of test assembly terminal board TB1.
d. Connect a test cable No. 7 from ground of power supply B (12.5 volts) to terminal D of test assembly terminal board TB1.
e. Connect a test cable No. 7 from the positive output of powersupply B (12.5 volts) to terminal F of test assembly terminal board TB1.
f. Connect a test cable No. 4 from the HP-200AB audio output to test assembly terminals A and B (shieId) of terminal board TB1.
g. Connect test cable No. 4 from the ME-30A/U input to test assembly terminals A and B (shield) of terminal board TB 1 .
h. Connect a test cable No. 2 from coaxial ANT jack J2 of the RT-505/PRC-25 to the input of the Attenuator, Adjustable "T", General Radio Type GR-874-GA (adjustable attenuator).
i. Connect test cable A ${ }^{\mathrm{T}}$. 3 from the unattenuated output of the adjustable attenuator to the input of the AN/URM-43A.
j. Connect a test cable No. 2 from the attenuated output of the adjustable attenuator to the ME-57/U input through adapter UG-274/U.
k. Connect test cable 9 from the AN/USM-26 input, through adapter UG-274/U, to the ME57/U input.
l. Connect a test cable No. 4 from the ME-57/U audio output to the TS-723A/U input.
m. Connect a test cable No. 4 from the ME-57/U audio output to the AN/USM-50A vertical input.
n. Connect a test cable No. 4 from the audio input terminals to the meter terminals of the TS-723A/U.
o. Do not turn on RT-505/PRC-25. Turn on all test equipment and allow sufficient warmup time.
p. Adjust power supply A to 2.5 volts and power supply B to 12.5 volts.
q. Set the RT-505/PRC-25 function switch to ON and select a frequency of 41.00 mc . Allow 5 minutes to warmup.
r. Adjust the HP-200AB to $1,000 \mathrm{cps}$. Adjust the TRANSMITTER AUDIO INPUT LEVEL control
on the test assembly and the HP-200AB output level to produce a 1.4 -millivolt reading on the ME-30A/U.
s. Perform the transmitter system tests indicated in paragraph 105.

104. Receiver System Tests, Radio Set AN/ PRC-25

a. Sensitivity Test.
(1) Perform the sensitivity test with the equipment connected in a standard receiver test setup (para 102 and fig. 79.7), except set the RF signal level at the RT$505 /$ PRC-25 coaxial ANT input to 0.6 microvolt.
(2) Measure the signal-plus-noise-plus-distortion to noise-plus-distortion ratio on the TS-723A/U, and record. The ratio should be at least 10 db .
(3) Adjust power supply A to 2.25 volts, power supply B to 10.0 volts, and repeat the procedure given in (2) above.
(4) Adjust power supply A to 3.0 volts, power supply B to 15 volts, and repeat the procedures given in (2) above.
(5) Repeat the procedures given in (2), (3), and (4) above at 65 mc .
(6) Repeat the procedure given in (2) above at $30.00,52.00,53.00$, and 75.95 mc .
b. Distortion, Audio Power Output, Volume Control, and Audio Frequency Response Tests.
(1) Perform these tests with the equipment connected in a standard receiver test setup (para 102 and fig. 79.7).
(2) Measure the percentage of distortion on the TS-723A/U. Maximum allowable distortion is 6 percent.
(3) Adjust the VOLUME control on RT-505/ PRC-25 to produce a 2 -volt reading on the TS-723A/U (used as a vacuum-tube voltmeter).
(4) Measure the percentage of distortion on the TS-723A/U. Maximum allowable distortion is 10 percent.
(5) Set the VOLUME control on the RT-505/ PRC-25 fully clockwise. The output indicated on the TS-723A/U (used as a vacuum-tube voltmeter) should be at least 2 volts.
(6) Set the VOLUME control on RT-505/ PRC-25 fully counterclockwise and disconnect the RF output cable from the 1066A. The output indicated on the TS-

$723 \mathrm{~A} / \mathrm{U}$ (used as a vacuum-tube voltmeter) should be not greater than 0.02 volt.
(7) Reestablish the standard receiver test conditions; use the HP-200AB to externally modulate the 1066A.
(8) Without changing the RT-505/PRC-25 VOLUME control setting, determine the receiver audio output level produced with modulation frequencies of $300,500,2,000$, and $3,000 \mathrm{cps}$ (at $10-\mathrm{kc}$ deviation). Acceptable frequency response is $+0,-6 \mathrm{db}$ (from the $1,000-\mathrm{cps}$ reference) at 300 cps , and $+3,-6 \mathrm{db}$ at $500,2,000$, and $3,000 \mathrm{cps}$.
c. Limiting Test
(1) Perform the limiting test with the equipment connected in a standard receiver test setup (para 102 and fig. 79.7), except set the RF signal level at the RT-505/PRC-25 coaxial ANT input to 1 microvolt.
(2) Adjust the 1066A frequency for minimum distortion as checked on the TS-723A/U.
(3) Increase the 1066 A output to produce 100 millivolts at the RT-505/PRC-25 coaxial ANT input.
(4) Readjust the 1066A frequency for minimum distortion. The new audio output level on the TS-723A/U (used as a vacuumtube voltmeter) must be within $\pm 3 \mathrm{db}$ of the original setting (of 1 volt).
d. Squelch Sensitivity and Retransmit Tests.
(1) Perform the squelch sensitivity and retransmit test with the equipment connected in a standard receiver test setup (para 102 and fig. 79.7) except set the RF signal level at the RT-505/PRC-25 coaxial ANT input to 0.5 microvolt, the RT-505/PRC-25 function switch to SQUELCH, and modulate the 1066A simultaneously at $1,000 \mathrm{cps}$ and 150 cps as described in (2) through (7) below.
(2) Set the 1066A SET MODULATION control fully counterclockwise.
(3) Use a 10 -second count on the AN/USM26 to adjust the output frequency of the HP-200AB to $150 \mathrm{Cps} \pm 1.5 \mathrm{cps}$.
(4) Set the HP-200AB output level to produce 3-kc deviation on the 1066A. Accurately determine and record the AMPLITUDE control setting.
(5) Set the HP-200AB AMPLITUDE control fully counterclockwise.
(6) Adjust the 1066A SET MODULATION control to produce $10-\mathrm{kc}$ deviation.
(7) Restore the HP-200AB ATTENUATOR setting to the position determined as noted in (4) above.
(8) Set the RT-505/PRC-25 function switch to RETRANS. The test assembly RETRANSMIT lamp should light and the TS-723A/U (used as a vacuum-tube voltmeter) should indicate receiver audio output. The RETRANSMIT lamp provides a convenient method of monitoring operation of the squelch circuit.
(9) Momentarily set the RT-505/PRC-25 function switch to OFF then back to RETRANS to verify that the receiver will unsquelch (RETRANSMIT lamp lighted) with an RF input level of 0.5 microvolt.
(10) Slowly decrease the RF input level at the RT-505/PRC-25 coaxial ANT input to 0.35 microvolt. The receiver should remain unsquelched.
(11) Disconnect the 1066A RF output from the receiver coaxial ANT input. The receiver should squelch, the lamp associated with test cable No. 1 should go out, and the TS-723A/U (used as a vacuum-tube voltmeter) should indicate no receiver audio output.
(12) Reduce the 150 -cps modulation to zero and increase the $1,000-\mathrm{cps}$ modulation to produce $15-\mathrm{kc}$ deviation. Set the RF level at the RT-505/PRC-25 coaxial ANT jack to 10 microvolt. The receiver should not unsquelch.
e. Catching Range Test.
(1) Perform the catching range test with the equipment connected in a standard receiver test setup (para 102 and fig. 79.7), except set the 1066A and the RT-505/PRC-25 to 31.50 mc . Place the RT-505/PRC-25 upside-down for this test.

Caution: Check to see that the RT$505 / \mathrm{PRC}-25$ is set to a frequency ending in 50 (XX. 50) when disengaging the coupling in the procedure in (2) below; otherwise the coupling may become damaged.
(2) Disengage the mechanical coupling finger (fig. 3, TM 11-5820-398-20). This disables the crystal switching assembly from module A10. To disengage the coupling, fabricate a tool from a piece of sheet metal that measures 1 by 4 inches and is between 0.018 and 0.035 inch thick (20 to 26 gage). Insert one end of the sheet metal tool into
the space between module A10 and the brass wheel-like part of the coupling.
(3) Adjust RT-505/PRC-25 to a frequency $50-\mathrm{kc}$ higher than its current setting.
(4) Momentarily set the RT-505/PRC-25 function switch to OFF, then back to ON, and verify receiver audio output by observing the oscilloscope and the TS$723 \mathrm{~A} / \mathrm{U}$ (used as a vacuum-tube voltmeter) indications.
(5) Repeat the procedures given in (3) and (4) above until a frequency setting produces no audio output within 3 seconds, or until a frequency of 31.95 mc is reached. Record the maximum frequency that produces an audio output,
(6) Adjust the RT-505/PRC-25 to 31.50 mc and repeat the procedures given in (3) and (4) above except reduce the frequency by 50 kc for each successive step until the audio output is not obtained or until a frequency of 31.00 mc is reached. Record the minimum frequency that produces an audio output.
(7) Withdraw the decoupling tool and rotate the kilocycle frequency selector to 50 to re-engage the coupling.
(8) Adjust the RT-505/PRC-25 to 51.50 mc and disengage the coupling ((2) above).
(9) Repeat the procedures given in (3) and (4) above until a frequency produces no audio output within 3 seconds or until a frequency of 51.95 mc is reached. Record the maximum frequency that produces an audio output.
(10) Adjust the RT-505/PRC-25 to 51.50 mc and repeat the procedures given in (3) and (4) above except reduce the frequency for each successive step until the audio output is not . obtained or until a frequency of 51.00 mc is reached. Record the minimum frequency that produces an audio output.
(11) Withdraw the decoupling tool and rotate the kilocycle frequency selector to 50 to reengage the coupling.
(12) Evaluate the test results. At both test frequencies (31.50 and 51.50 me), the minimum acceptable catching range is 650 kc with at least 250 kc on each side of the test frequency.
f. Selectivity Test.
(1) Perform the selectivity test with the equipment connected in a standard re-
ceiver test setup (para 102 and fig. 79.7), except disconnect test cabIe No. 9 from the 1066A output and connect it to the AN/USM-44 output. Monitor the RF voltage at A21J3 with RF Millivoltmeter Hewlett-Packard Model HP-411A (HP411A).
(2) Adjust the AN/USM44 for a $41.00-\mathrm{mc} \mathrm{cw}$ output at approximately 100 UV .
(3) Tune the AN/USM-44 for a maximum indication on the HP-411A.
(4) Increase the RF output of the AN/USM44 to the point where limiting just starts (where an increase in the AN/USM-44 output does not increase the reading on the HP-411A.)
(5) Reduce the AN/USM-44 RF output for an indication on the HP411A that is 6 db below the limiting level. Sweep the ANT/USM-44 frequency across the selectivity pass band and select the frequency that provides the highest peak. Readjust the AN/USM-44 output level so the selected peak is 6 db below the limiting level.
(6) Determine the pass-band irregularities and the 6 -db-down points. The pass-band irregularities should be within 2 db and the 6 -db-down points should be at least 32-kc apart. Use the AN/USM-26 to determine the AN/USM-44 frequency at the $6-\mathrm{db}$ points. Disconnect test cable No. 9 from the dummy antenna input and reconnect cable No. 9 to the AN/USM-26 input. Increase the AN/USM-44 output level sufficiently to drive the AN/USM-26.
(7) Set the AN/USM-44 to the frequency of the highest peak of the selectivity pass band and to an output level 6 db above the noise level. (Read the noise level on the HP-411A with the AN/USM-44 output at zero; then increase the AN/USM-44 RF output until a $6-\mathrm{db}$ increase is indicated by the HP-411A.)
(8) Increase the AN/USM-44 output level 60 db and locate the two frequencies that produce the same output level (6 db above noise) as read on the HP-411A ((7) above). Determine and record the frequencies by use of the AN/USM-26. The two recorded frequencies are the 60 db -down points. They should be less than $100-\mathrm{kc}$ apart.
(9) Repeat the procedures given in (7) and (8) above except increase the RF output 70 db to determine the $70-\mathrm{db}$-down points. The $70-\mathrm{db}-\mathrm{down}$ points should be less than $120-\mathrm{kc}$ apart.
(10) Search 50 kc beyond the $70-\mathrm{db}$-down points for spurious responses. Detected spurious responses should not be above the -70 -dblevel.
Note. The receiver system tests are now completed. Perform the procedures indicated in paragraph 103 before proceeding.

105. Transmitter System Tests, Radio Set AN/PRC-25

a. Power Output Test.
(1) Perform the power output test with the equipment connected in a standard transmitter test setup (para 103 and fig. 79.8), except set the HP-200AB output level to zero and the RT-505/PRC- 25 frequency to 30.00 mc .
(2) Set the test assembly TRANSMITTER CARRIER switch to ON.
(3) Record the frequency and power output indicated by the AN/USM-26 and AN/ URM-43A respectively.
(4) Set the test assembly TRANSMITTER CARRIER switch to OFF.
(5) Repeat the procedures given in (2), (3), and (4) above at $42.00,52.95,53.00,65.00$, and 75.95 mc .
(6) Evaluate the test results. Minimum acceptable power output is 1.6 watts on the low-frequency band (30.00 to 52.95 mc) and 1.1 watts on the high-frequency band (53.00 to 75.95 me).

b. Frequency Accuracy Test.

(1) Perform the frequency accuracy test with the equipment connected in a standard transmitter test setup (para 103 and fig. 79.8), except set the HP-200AB output level to zero., and the RT-505/PRC-25 frequency to 75.00 mc .
(2) Set the test assembly TRANSMITTER CARRIER switch to ON.
(3) Record the selected frequency (from the RT-505/PRC-25 REC-TRANS FREQUENCY indicators) and the output frequency as indicated by the AN/USM-26.
(4) Set the test assembly TRANSMITTER CARRIER switch to OFF.
(5) Repeat the procedures given in (2), (3), and (4) above at $75.05,75.10,75.20,73.30$,
75.40, 75.50, 75.60, 75.70, 75.80, and 75.95 mc .
(6) Repeat frequency check ((5) above) in reverse order (75.95 mc first).
(7) Turn the megacycles control from 75 to 53 , then back to 75 , and repeat the procedures given in (2), (3), and (4) above.
(8) Return the RT-505/PRC-25 to 75.00 mc , set power supply A to 2.25 volts, power supply B to 10.00 volts, and repeat the procedures given in (2) through (5) above.
(9) Return the RT-505/PRC-25 to 75.00 mc , set power supply A to 3.0 volts, power supply B to 15.00 volts, and repeat the procedures given in (2) through (5) above.
(10) Evaluate the test results. Maximum acceptable frequency inaccuracy is ± 3.5 kc for all tests.
c. Tone Oscillator Frequency and Modulation Tests.
(1) Perform the tone oscillator frequency and modulation tests with the equipment connected in a standard transmitter test setup (para 103 and fig. 79.8) except set the HP-200AB output level to zero, connect test cable No. 6 from the AN/USM-26 input to the ME-57/U audio output, and set the AN/USM- 26 for a 10 -second count.
(2) Set the test assembly TRANSMITTER CARRIER switch to ON.
(3) Record the deviation indicated by the ME-57/U and the frequency indicated by the AN/USM-26.
(4) Set the test assembly TRANSMITTER CARRIER switch to OFF.
(5) Evaluate the test results. Acceptable deviation is $3 \mathrm{kc} \pm 0.5 \mathrm{kc}$ and acceptable frequency is $150 \mathrm{cps} \pm 1.5 \mathrm{cps}$ (in a 10 second count).

d. Modulation Capability and Deviation Tests.

(1) Perform the modulation capability and deviation tests with the equipment connected in a standard transmitter test setup (para 103 and fig. 79.8), except set the RT-505/PRC-25 frequency to 47.00 mc , ground A23J3 with test cable No. 1, and adjust the HP-200AB output (and, as required, the TRANSMITTER AUDIO INPUT LEVEL control for a 1.4 -millivolt reading on the ME-30A/U.
(2) Set the test assembly Transmitter CARRIER switch to ON.
(3) Record the RF and audiofrequencies being used and the deviation indicated on the ME-57/U.
(4) Set the test assembly TRANSMITTER CARRIER switch to OFF.
(5) Repeat the procedures given in (2), (3), and (4) above with modulation frequencies of $300,2,000$, and $3,000 \mathrm{cps}$.
(6) Repeat the procedures given in (2), (3), and (4) above with the RT-505/PRC-25 set to 60.00 mc and modulation frequencies of $300,1,000,2,000$, and $3,000 \mathrm{cps}$.
(7) Evaluate the test results. At both 47.00 and 60.00 mc , acceptable deviation must be within the following limits:

Modulation frequency (cps)	Acceplable dcuiation (kc)
300	$10+3,-4$
1,000	10 ± 2
2,000	10 ± 3
3,000	10 ± 3

e. Sidetone Test

(1) Perform the sidetone teat with the equipment connected in a standard transmitter setup (para 103 and fig. 79.8), except set the RT-505/PRC-25 VOLUME control fully clockwise and disconnect TS-723A/U test cable No. 4 from the ME-57/ U output and connect it to test assembly terminals C and D (shield) of terminal board TB1.
(2) Set the test assembly TRANSMITTER CARRIER switch to ON. The TS-723A/ U (used as a vacuum-tube voltmeter) should indicate greater than 0.7 volt.
(3) Set the test assembly TRANSMITTER CARRIER switch to OFF.

f. Antenna Loading Tests.

$\{1)$ Perform the antenna loading test with the equipment connected in a standard transmitter test setup (para 103 and fig. 79.8), except disconnect the AN/URM-43A input lead at the RT-505/PRC-25 coaxial ANT connector, set the RT-505/PRC-25 to 30.00 mc , install the transmitter long antenna 30-megacycle load as described in (2) through (4) below, and connect the ME-26B/U in parallel with the resistor of the transmitter load (fig. 79.5).
(2) Remove a mounting screw from one corner of the whip ANT jack and install antenna load adapter No. 1 (ground connection).
(3) Install antenna load adapter No. 2 in the whip ANT jack; make sure it operates the
microswitch in the ANT jack housing. (Use the brass adapter nut for short antenna tests only.)
(4) Install the selected transmitter load between the amgator clips as indicated in figure 79.5. Always ground the resistor end of the transmitter load. The transmitter long antenna load characteristics and minimum acceptable RF voltages developed across the resistor of each load are identified in the chart below.

Long antenna loading			
\bar{T} est ${ }^{\text {frequency }}$ (me)	Load characteristics		$\underset{\substack{\text { Minimum } \\ \text { voltage } \\ \text { (rms) }}}{ }$
	$\begin{aligned} & \text { Resistance } \\ & \text { (ohms) } \end{aligned}$	Capacitance (uuf)	
30.00---	130	0	9
52.50 -	619	0	21
53.50--	400	8	16
75.00---------	82	70	8

(5) Set the test assembly TRANSMITTER CARRIER switch to ON and read the RF voltage across the resistor of the transmitter load with the ME-26B/U. The minimum acceptable reading is listed in the chart in (4) above.
(6) Set the test assembly TRANSMITTER CARRIER switch to OFF.
(7) Repeat the procedures given in (4), (5), and (6) above at 52.50, 53.50, and 75.00 mc . Use the chart in (4) above to correlate the required test frequency, transmitter load, and minimum acceptable voltage.
(8) Unscrew and remove antenna load adapter No. 2.
(9) Install the brass adapter nut on antenna load adapter No. 2 and reinstall the adapter in the whip ANT jack.
Note. Load adapter No. 2, with the brass nut, should not energize the ANT housing microswitch.
(10) Install the short antenna 30-megacycle transmitter load between the alligator clips; make sure the resistor-end of the load is grounded. Transmitter short antenna characteristics and minimum acceptable RF voltages are identified in the following chart.

Test frequency (mc)	antenna loading		
	Load cha	acteristics	
	Resistance (ohms)	$\begin{aligned} & \text { Capacitancee } \\ & \text { (uff) } \end{aligned}$	$\underset{\substack{\text { voltage } \\(\text { (ms) })}}{ }$
30.00------------	26.1	12	4
52.50 -	56.2	18	7
53.50------------	56.2	18	5
75.00---------	61.9	82	7

(11) Set the test assembly TRANSMITTER CARRIER switch to ON and read the RF voltage across the resistor of the transmitter load with the ME-26B/U. The minimum acceptable reading is listed in the chart in (10) above.
(12) Set the test assembly TRANSMITTER CARRIER switch to OFF.
(13) Repeat the procedures given in (10), (11), and (12) above at $52 . .50,53.50$, and 75.00 mc . Use the chart in (10) above to correlate test frequency, transmitter load, and minimum acceptable voltage.
(14) Remove the antenna load adapters and replace the screw in the corner of the whip ANT jack.
g. Catching Range Test.
(1) Perform the catching range test with the equipment connected in a standard transmitter test setup (para 103 and fig. 79.8) except set the HP-200AB output level to zero and the RT-505/PRC-25 frequency to 31.50 mc . Set the RT-505/PRC-25 upside-down for this test.

Caution: Check to see that the RT-505/ PRC-25 is set to a frequency ending in 50 (XX. 50) when disengaging the coupling in procedure in (2) below; otherwise the coupling may become damaged.
(2) Disengage the mechanical coupling finger (fig. 3, TM 11-5820-398-20) that disables the crystal switching assembly from module Al0 (para 104e(2)).
(3) Adjust the RT-505/PRC-25 to a frequency $50-\mathrm{kc}$ higher than its current setting.
(4) Set the test assembly TRANSMITTER CARRIER switch to ON and observe the frequency indicated by the AN/USM-26. it should be $31.50 \mathrm{mc} \pm 3.5 \mathrm{kc}$.
(5) Set the test assembly TRANSMITTER CARRIER switch to OFF.
(6) Repeat the procedures given in (3), (4), and (5) above until the AN/USM-26 reading is
not within $\pm 3.5 \mathrm{kc}$ of 31.50 mc or until a frequency of 31.9 .5 mc is reached.
(7) Record the last RT-505/PRC-25 frequency setting that produced an AN/USM-26 reading within $\pm 3.5 \mathrm{kc}$ of 31.50 mc .
(8) Adjust RT-505/PRC-25 to 31.50 mc and repeat the procedures given in (3) through (7) above except reduce the frequency setting for each successive step until the output frequency exceeds $\pm 3.5 \mathrm{kc}$ of 31.50 mc or until a frequency of 31.00 is reached.
(9) Withdraw the decoupling tool and engage the coupling.
(10) Adjust the RT-505/PRC-25 to 51.50 mc and disengage the coupling ((2 above).
(11) Repeat the procedures given in (3), (4), and (5) above until the AN/USM-26 reading produced is not within $\pm 3.5 \mathrm{kc}$ of 51.50 mc or until a frequency of 51.95 mc is reached.
(12) Record the last RT-505/PRC-25 frequency that produced an AN/USM-26 reading within $\pm 3.5 \mathrm{kc}$ of 51.50 mc .
(13) Adjust RT-505/PRC-25 to 51.50 mc and repeat the procedures given in (3), (4), and (5) above, except reduce the frequency for each successive step, check the AN/USM26 for $51.50 \mathrm{mc} \pm 3.5 \mathrm{kc}$ at each step, and stop if 51.00 mc is reached. Record the limiting frequency.
(14) Withdraw the decoupling tool and engage the coupling.
(15) Evaluate the test results. At both test frequencies (31.50 and 51.50 me), the minimum acceptable catching range is 650 kc with at least 250 kc on each side of the test frequency.

h. Distortion Test.

(1) Perform the distortion test with the equipment connected in a standard transmitter test setup (para 103 and fig. 79.8), except connect test cable No. 1 from test point A23J3 to chassis ground. The ME-57/U is used as a receiver for this test.
(2) Set the test assembly TRANSMITTER CARRIER switch to ON.
(3) Tune the ME-57/U for minimum distortion.
(4) Read the distortion on the TS-723A/U. Maximum allowable distortion is 10 percent.
(5) Set the test assembly TRANSMITTER CARRIER switch to OFF.
106. Miscellaneous System Tests and Inspection, Radio Set AN/PRC-25
a. Tests.
(1) Perform the miscellaneous system tests with the equipment connected in a standard transmitter test setup (para 103 and fig. 79.8) .
(2) Connect Handset $\mathrm{H}-138 / \mathrm{U}$ to one of the AUDIO connectors on the front panel of RT-505/PRC-25.
(3) Press the $\mathrm{H}-138 / \mathrm{U}$ keying button and speak into the microphone. The AN/ URM-43A; ME-57/U, and AN/USM-50A should indicate transmitter output, and sidetone should be heard from the earphone.
(4) Connect the $\mathrm{H}-138 / \mathrm{U}$ to the other AUDIO connector and repeat the procedure given in (3) above.
(5) Set the RT-505/PRC-25 function selector to LITE and observe that the RECTRANS FREQUENCY dials are lighted.
(6) With the ME-26B/U, measure the terminal voltages of battery connector J4. Voltage measurements between terminals and ground should be 0 volt at terminal A, 12.5 volts at terminal B , and 2.5 volts at terminal C.
b. Inspection.
(1) Perform the inspection procedure as a final step before replacing the RT-505/ PRC-25 case.
(2) Inspect the RT-505/PRC-25 PRESET knobs. Operate the elements of the presetting feature to assure moper operation.
(3) Inspect the gasket at the rear of the front panel of RT-505/PRC-25. It should be resilient, properly seated in its channel, and in general good condition.
(4) Inspect the O-ring on J4. It should be resilient, properly seated in its channel, and in general good condition. When replacing the RT-505/PRC-25 case, be sure the Oring is not damaged and that the case is properly seated against the gasket on the rear of the front panel. If either gasket is in poor" condition or not properly seated, the unit will not be waterproof.
(5) Replace the RT-505/PRC-25 in its case. Inspect the four captive screws before engaging them. Engage and tighten the captive screws.
Page 167, figure 88. Make the following changes:
Near switches S2 and S3 add: (Note 5).
After note 4, add note 5:
5. ON EQUIPMENT BEARING ORDER No. 64009-PP-63, SWITCHES S2 and S3
ARE OMITTED.

By Order of the Secretary of the Army:
official:
J. C. LAMBERT,

Major General, United States Amy,
The Adjutant General.

HAROLD K. JOHNSON,
General, United States Army, Chief of Staff.

Distribution:

Active Army:

USASA (2)
CNGB (1)
CC-E (7)
Dir of Trans (l)
CofEngrs (1)
TSG (1)
CofSptS (1)
USAIB (5)
USCONARC (5)
USAMC (5)
ARADCOM (5)
ARADCOM Rgn (2)
OS MAj Cored (4)
LOGCOMD (2)
USAECOM (30)
USAMICOM (4)
USASMC (2)
USACDCEA (1)
USACDCCBRA (1)
USACDCCEA (1)
USACDCCEA (Ft Huachuca Ofc) (1)

USACDCOA (1)
USACDCQMA (1)
USACDCTA (1)
USACDCADA (1)
USACDCARMA (1)
USACDCAVNA (1)
USACDCARTYA (1)
USACDCSWA (1)
MDW (1)
Armies (2) except
Seventh USA (5)
Corps (2)
USAC (3)
1lth Air Aslt Div (3)
1st GM Bde (5)

USA Rsch Spt Gp (Ft Belvoir) (5)	USASCC (4)
507th USASA Gp (5)	USA Tml Comd (1)
508th USASA Gp (5)	Army Tml (1) except
318th USASA Bn (5)	OART (5)
319th USASA Bn (5)	USATC AD (2)
320th USASA Bn (5)	USATC Armor (2)
177th USASA Co (5)	USATC Engr (2)
182nd USASA Co (5)	USATC Inf (2)
183rd USASA Co (5)	USASTC (2)
184th USASA Co (5)	WRAMC (1)
Instl (2) except	Army Pic Cen (2)
Ft Monmouth (70)	USAATC (5)
Ft Gordon (10)	WSMR (5)
Ft Huachuca (10)	Sig Fld Maint Shopa (2)
Ft Carson (21)	AMS (1)
USMA (5)	USAERDAA (2)
Svc Colleges (2)	USAERDAW (13)
Br Svc Sch (2) except	Units org under fol TOE'e (2 copies
MFSS (5)	each except as indicated):
USAARMS (5)	$11-16$
USASCS (5)	$11-35$
USA Cmbt Survl Sch (5)	$11-57$
USASESCS (50)	$11-97$
GENDEP (2)	$11-98$
Sig See, GENDEP (5)	$11-117$
Sig Dep (12)	$11-155$
Army Dep (2) except SAAD (30)	$11-157$
TOAD (14)	$11-337$
FTWOAD (10)	$11-5 ’) 0$ (AA-AE) (4)
LEAD (5)	$11-555$
SHAD (3)	$11-557$
NAAD, SVAD (5)	$11-558$
CHAD (3)	$11-587$
ATAD (10)	$11-592$
Lexington-Blue Gram (14)	$11-597$
USAMERCC (5)	$29-25$ (12)

NG: State AG (3).

USAR: None.

For explanation of abbreviations used, see AR 320-50.
$\left.\begin{array}{l}\text { Technical Manual } \\ \text { No. 11-5820-398-35 }\end{array}\right\}$

HEADQUARTERS DEPARTMENT OF THE ARMY WASHINGTON 25, D. C., 8 J anuary 1963

RADIO SET AN/PRC-25

		Paragraph	Page
CHAPTER 1.	INTRODUCTION	1,2	3
CHAPTER 2.	THEORY		
Section 1.	Block diagram analysis..	315	4\|5
11.	Circuit analysis	6	7440
CHAPTER 3,	THIRD ECHELON MAINTENANCE		
Section 1.	General troubleshooting techniques	34.36	42
11.	Third echelon troubleshooting	377,39	44.52
III.	Third echelon repairs	40,42	53,54
IV.	Third echelon alignment.	43,45	59] 60
CHAPTER 4.	FOURTH ECHELON MAINTENANCE		
Section I.	Fourth echelon repairs	$46+48$	61464
11.	Fourth echelon alignment.	49,51	66/67
III.	Fourth echelon testing procedures	52, 67	67-105
CHAPTER 5	FIFTH ECHELON MAINTENANCE	68197\|	06-147
APPFNDIX	REFERENCES		169
UNDEX.			170

This page left blank intentionally.

CHAPTER 1

INTRODUCTION

1. Scope

a. This manual covers field and depot maintenance for Radio Set AN/PRC-25. It includes instructions appropriate to third, fourth, and fifth echelons for troubleshooting, testing, aligning, and repairing the equipment. Detailed functions of the equipment are covered in the theory chapter.
b. The complete set of technical manuals for this equipment includes TM 11-5820-398-10, TM 11-5820-398-20, TM 11-5820-398-20P, and TM 11-5820-398-35P.
c. Forward all comments on this publication direct to: Commanding Officer, U. S. Army Electronics Materiel Support Agency, ATTN: SELMS-MP, Fort Monmouth, New Jersey. (DA Form 1598 (Record of Comments on Publications), DA

Form 2496 (Disposition Form), or letter may be used.)

2. Index of Publications

Refer to the latest issue of DA Pam 310-4 to determine whether there are new editions, Changes, or additional publications pertaining to your equipment. Department of the Army Pamphlet No. 310-4 is a current index of Technical Manuals, Technical Bulletins, Supply Bulletins, Lubrication Orders, and Modification Work Orders that are available through publications supply channels. The index lists the individual parts ($-10,-20,-35 \mathrm{P}$, etc) and the latest Changes to and revisions of each equipment publication.

Section I. BLOCK DIAGRAM ANALYSIS

3. Receiving Signal Path

(fig. 82)
Receiver-Transmitter, Radio RT-505/ PRC-25 is tunable in 50-kilocycle (kc) increments over a frequency range of 30.00 to 75.95 megacycles (me) to provide 920 channels. The frequency range is covered in two bands: the low band is 30.00 to 52.95 mc ; the high band is 53.00 to 75.95 mc . The front panel tuning controls and the BAND switch are used for tuning the RT-505/PRC-25 to the desired frequency.
a. The incoming radiofrequency (rf) signals are coupled from the antenna through the antenna loading network to the power amplifier tank. The antenna loading network matches the antenna circuit impedance to the long or the short antenna. The power amplifier tank couples the rf signal to the receiver first rf amplifier. The power amplifier tank tunes both the receiver and transmitter signals. Relay K1 protects the receiver first rf amplifier from the high power during transmission by grounding the input to the receiver first rf amplifier. The amplified signal from the receiver first rf amplifier is applied to the receiver second rf amplifier, where it is amplified and applied to the receiver mixer.
b. The output from the variable frequency oscillator (vfo), ranging in frequency from 41.50 to 64.45 mc in $50-\mathrm{kc}$ increments, is applied through the vfo buffer to the receiver mixer. The receiver mixer heterodynes the two signals to produce the 11.5-mc intermediate frequency (if.). The vfo frequency is stabilized by the output of the frequency synthesizer system (para) 5). The ganged tuning capacitor is positioned by the mc and kc tuning controls through a gear train.
c. The $11.5-\mathrm{mc}$ if. output of the receiver
mixer stage is coupled through the 11.5mc crystal filter, and amplified by the receiver first, second, third, fourth and fifth if. amplifiers. The receiver fifth if. amplifier output is applied to the receiver discriminator driver. The receiver discriminator driver output is applied to the receiver discriminator. The five receiver if. stages (A21) have a power gain of approximately 85 decibels (db). The driver output is fully limited. The limited if. signal is applied to the receiver discriminator, which demodulates the if. signal. The audio output of the receiver discriminator is applied to the receiver first audio amplifier.
d. The receiver first audio amplifier output is applied to both the VOLUME control and to the squelch input amplifier. The VOLUME control controls the audio signal level to the receiver audio output amplifier. The amplified signal from the receiver audio output amplifier is fed to the handset. The two receiver audio amplifiers also amplify sidetone signals from the speech amplifier limiter of the transmitter section during transmission.
e. During squelch operation, when no signal is being received, the audio output circuit is shorted to ground through contacts of squelch relay K 3 . If an rf carrier having a s quelch tone is received, K3 is energized by an output from the relay driver, the short circuit is removed, and audio signals are fed to the H 138/U handset. Relay K3 will be energized only if the output from the receiver first audio amplifier includes a 150 cyde-persecond (cps) tone signal. During transmission, the transmitter tone generator provides a $150-\mathrm{cps}$ signal to the squelch input amplifier to prevent shorting the sidetone.
f. The receiver audio amplifier output, including the $150-\mathrm{cps}$ tone, is applied to the squelch input amplifier. The squelch input amplifier with the emitter -follower and squelch feedback amplifier passes the $150-\mathrm{cps}$ tone, which is rectified in the squelch direct current (dc) detector amplifier. When the squelch relay driver receives a signal from the dc detector amplifier, it provides the current necessary to energize K3. When K3 is energized, the ground is removed from the audio output amplifier to allow the audio signal to be fed to the handset.
g. In addition to the function of squelch relay K3 described in f above, relay K3 provides a transmitter keying function when two AN/PRC-25's are used for retransmission. During this type of service, the receiving AN/PRC-25 is set for squelch operation. When a signal is received, energizing K3, a ground circuit is completed, through the interconnecting cable, to key the transmitting AN/PRC25.

4. Transmitting Signal Path (fig. 8.3)

a. The audio signal developed in the handset microphone is amplified in the first and second speech amplifiers, and limited in the output limiter stage. The output limiter stage has two outputs: it applies the audio signals to the receiver first audio amplifier as sidetone, and applies the audio signal to the modulator. The modulator also has a $150-\mathrm{cps}$ tone input from the 150 -cycle tone oscillator, through the feedback amplifier. The modulating voltages applied to the modulator cause the sidestep oscillator (sso) output frequency to vary at the input audiofrequency (af) rate from the microphone and at the 150 -cps rate. The output from the $150-\mathrm{cps}$ tone generator is also applied to the squelch input amplifier (para 3 f).
b The frequency stability of the sso is greatly improved by the quarter-wave network. The quarter-wave network is a crystal-controlled passive network connected across the sso tuned circuit. The quarter-wave network improves the sta-
bility of the sso approximately 40 times relative to its free-running state.
c. The frequency-modulated (fm) output of the sso is coupled through the sso buffer amplifier to the transmitter mixer. The sso buffer prevents loading of the sso by the transmitter mixer. The transmitter mixer heterodynes the $11.5-\mathrm{mc}$ fm signal from the sso with the vfo signal to produce the transmitter output frequency. The vfo is stabilized by application of its output frequency through the frequency synthesizer buffer to the frequent y synthesizer system (fss) (para 5). The fss will correct any vfo frequency drift.
d. The transmitter mixer output is applied to the transmitter first rf amplifier. The output of the transmitter first rf amplifier is applied to the transmitter second rf amplifier, which is cascaded with the intermediate power amplifier and the power amplifier. These amplifiers increase the transmitted signal level to the proper amplitude. The transmitter power amplifier output is coupled through the power amplifier tank and antenna loading network to the antenna. During transmission, the input to the receiver is grounded by relay K1 which is energized by receive-transmit relay K2. Relay K2 also energizes the dc-to-dc converter, which supplies the operating voltages ($B+$ and bias) for the power amplifier tube.

5. Frequency Synthesizer System (fig. 84)

The frequency synthesizer system (fss) is a closed loop, automatic phase control (apc) system which locks the vfo on frequency. The fss is used both during reception and during transmission. During transmission, the vfo output frequency is shifted 50 kc lower than it is during reception. The frequencies shown or figure 84 represent the fss frequencies associated with two typical received frequencies, and are used to illustrate the frequency relationships. The two typical received frequencies are 33.10 mc (low band) and 68.45 mc (high band). All frequencies used in a through i below can be converted to
those used for transmission, unless otherwise indicated, by subtraction of 50 kc from the given frequency.
a. The vfo output frequency ranges from 41.50 mc to 64.45 mc . The specific frequency depends on the channel selected, and whether the channel is in the high or low band.
(1) When the low band is used, the vfo operates at 11.50 mc above the carrier frequency. For example, at a received frequency of 33.10 mc , the vfo frequency is 44.60 mc .
(2) When the high band is used, the vfo operates at 11.50 mc below the carrier frequency. For example, at a received carrier frequency of 68.45 mc , the vfo frequency is 56.95 mc .
b. The vfo output (a above) is applied through the fss buffer and the fss first mixer buffer to the fss first mixer. The two buffer stages isolate the vfo from the fss first mixer to prevent feedback of sidebands created in the mixer. The fss first mixer receives another 'input from the pulse generator, 'which is driven by the output of the $1.0-\mathrm{mc}$ crystal oscillator. (During transmission, the output of the 1-mc crystal oscillator, and, therefore, that of the pulse generator, do not change in frequency.) The sinusoidal output of the I-mc crystal oscillator is applied to the pulse generator where it is shaped into pulses that are rich in harmonic content. The output of the pulse generator, which is applied to the fss first mixer, is a frequency spectrum ran gin g from 1 through 12 mc in $\mathrm{I}-\mathrm{mc}$ increments. (During transmission, the frequency spectrum does not change.) The fss first mixer heterodynes the two inputs and applies the resultant spectrum to the $53-\mathrm{mc}$ filter.
c. Since the frequencies developed in the fss first mixer output will be the two original signals plus their sum and difference, a frequency (plus its upper and lower sidebands) which approaches the 53mc bandpass will always be generated, regardless of the vfo output frequency. For example, when the vfo is operating at 44.60 mc , the sum of the eighth harmonic $(8 \mathrm{mc})$ of the pulse generator output fre-
quency and the vfo frequency (44.60 mc) equals 52.60 mc .
d. The 53-mc filter passes a band of' frequencies, centered at 53 mc , to the fss second mixer. The fss second mixer is also supplied an input signal from the 100-kc interval oscillator (e below) through the tuned net work, which reduces spurious frequencies. The fss second mixer heterodynes the two signals to produce their difference, which is the fss. if. It is applied to the fss if. amplifier.
e The output frequency of the 100-kc interval oscillator, which is independent of the receive-transmit condition, ranges from 46.85 mc to 47.75 mc in $100-\mathrm{kc}$ increments. The specific frequency depends on the frequency selected by the kc tuning knob; that is, whichever 50- or 100-kc channel point is selected. Except for the $0.95-\mathrm{mc}$ channel point, the frequency relationship is such that the output of the $100-\mathrm{kc}$ interval oscillator is 46.85 mc above a specific $100-\mathrm{kc}$ channel point ($0.00 \mathrm{mc}, 0.10 \mathrm{mc}, 0.20 \mathrm{mc}$, etc) and 46.90 mc above a specific 50 -kc channel point ($0.05 \mathrm{mc}, 0.15 \mathrm{mc}, 0.25 \mathrm{mc}$, etc). At the $0.95-\mathrm{mc}$ channel point, the $100-\mathrm{kc}$ interval oscillator is 45.90 mc above the kc indication; therefore, with the kc tuning knob set at the 0.95 - or $0.00-\mathrm{mc}$ channel point, the $100-\mathrm{kc}$ interval oscillator frequency will be 46.85 mc ; at a 0.05 - or $0.10-\mathrm{mc}$ channel point, the frequency will be 46.95 mc ; at a $0.15-$ or $0.20-\mathrm{mc}$ channel point, the frequency will be 47.05 mc ; at a 0.85 - or $0.90-\mathrm{mc}$ channel point, the frequency will be 47.75 mc .
(1) The fss if. will always be 5.65 mc at the $100-\mathrm{mc}$ channel points during reception, and 5.60 mc during transmission.
(2) The fss if. will always be 5.60 mc at the 50-kc channel points during reception and 5.55 mc during transmission.
f. The fss if. amplifier has a power gain of approximately 40 db to provide adequate limiting for a constant output amplitude. The fss if. amplifier output is applied to the discriminator and to the phase comparator. The phase comparator
also has an input from the 50-kc interval oscillator.
g. The $50-\mathrm{kc}$ interval oscillator generates one of three frequencies: 5.55 mc , 5.60 mc , or 5.65 mc . The specific frequency depends on the frequency selected by the kc tuning knob (50- or $100-\mathrm{kc}$ increments) and whether the RT-505/PRC25 is receiving or transmitting. When a $50-\mathrm{kc}$ channel point ($37.45,71.25$, etc) is selected, the 50-kc interval oscillator output frequency will be 5.60 mc during reception. (During reception, relay K2 causes a frequency shift to 5.55 me.) When a $100-\mathrm{kc}$ channel point (37.40, 71.20, etc) is selected, the 50-kc interval oscillator output frequency will be 5.65 mc , during reception. During transmission, relay K2 causes a $50-\mathrm{kc}$ shift to 5.60 mc .
(1) During reception, the $50-\mathrm{kc}$ interval oscillator output will always be 5.65 mc at the 100-kc channel point; during transmission, it will be 5.60 mc .
(2) During reception, the $50-\mathrm{kc}$ interval oscillator output will always be 5.60 mc at the $50-\mathrm{kc}$ channel points; during transmission, it will be 5.55 mc .
h. The output of the 50-kc interval os cillator (g above) is applied as a reference signal to the phase comparator. The phase of the two input signals (reference signal
from the oscillator buffer and fss if.) is compared and a control voltage is developed in the phase comparator. The control voltage is applied through the antihunt network to the apc modulator. If a phase lock exists, the apc voltage will assume the reference level to maintain the vfo on frequency. If a phase difference exists, an error voltage is developed in the phase comparator. This error voltage varies the apc voltage applied to the apc modulator from the reference level to correct the operating frequency of the vfo.
i. If the vfo output is too far from its proper frequency to be corrected by the phase comparator output, the discriminator (which extends the capture range of the fss) will develop a hunt voltage, which increases the deviation of the apc voltage. Since the vfo is far from its correct frequency, the frequency of the signal applied to the discriminator (f above) will be considerably removed from the proper fss if. (e above). The discriminator will develop a large error (hunt) voltage. This hunt voltage which is applied through the antihunt network to the apc modulator, changes the vfo output frequency to within the pullin and hold-in capabilities of the phase comparator. The antihunt network stops the hunting action of the vfo when the phase comparator has control of the vfo frequency.

Section II. CIRCUIT ANALYSIS

6. First Rf Amplifier Module A3 fig. 1)

First rf amplifier module A3 amplifies the signal received from module A2 (para 20). The first rf amplifier consists of a single transistor amplifier, the BAND switch, and tuned output circuits.
a. The input signal from module A2 is coupled through transformer T1 and coupling capacitor C 3 to the base and emitter of transistor Q1. The center-tap of the secondary of T1 is returned to rf ground through capacitor C2. The use of the tapped transformer input coupling neutralizes the stage and isolates the rf amplifier from
the power amplifier tank circuit. The output of Q1 is taken from the collector through coupling capacitor C5 and resistor R4 to BAND switch S1. Resistor R4 suppresses parasitic oscillations.
b. Switch S1 is positioned by the BAND switch on the front panel. The collector circuit of Q1 is tuned in each of the two BAND positions as follows:
(1) Low band. Transformer T2, fixed capacitor C8, trimmer capacitor C7 and tuning capacitor C2C (fig. 1) make up the tuned circuit. The position of tuning capacitor C2C is determined by the mc and kc controls on the front panel.
(2) High band. Transformer T3, fixed capacitor C11, trimmer capacitor C9, and tuning capacitor C2C make up the tuned circuit. Switch S1-D shorts the low-band tuned circuit to prevent loss of energy when operating on the high band.
c. The combinatoin of resistors R3 and R2 establishes the fixed bias for transis tor Q1. Resistor R1 is the emitter swamping resistor. Capacitor C6 and resistor R4 form a parasitic suppressor. Inductor L 2 is an rf decoupling coil. Capacitors Cl and C4 and inductor L1 make up a pi-type rf filter which prevents rf leakage into the power supply. Capacitor C10 is connected in series with tuning capacitor C2C (fig. 88) on the high band by SIC to decrease the effect of tuning capacitor C2C. Test jack J 2 can be used for measuring the input signal to module A3. Inductor L3 (in the main frame (fig. 88)) is an rf filter choke in series with the +10 -volt regulated input to module A3.

7. Sec ond Rf Amplifier Module A4

 (fig. 2)The second rf amplifier module A4 amplifies the signal from first amplifier module A3 (bara 6). The A4 output is applied to receiver mixer module A5 (para 8). The second rf amplifier consists of a single transistor amplifier, a BAND switch, and tuned output circuits. The circuit configuration and operation of module A4 is similar to that of first rf amplifier module A3 (para) 6) except that tuning capacitor C2D is used.

8. Receiver Mixer Module AS (fig. 3)

Receiver mixer module A5 heterodynes the rf signal from second rf amplifier module A4 (para 7) with the vfo output to produce an if. of 11.5 mc . Module A5 consists of a receiver mixer stage, a vfo buffer stage, a coupling transformer, and a tuned output circuit. The dc operating voltage is available to this module during reception only.
a. The rf signal input is coupled to the base of receiver mixer Q1 through isolating resistor R2 and coupling capacitor C2.

The vfo input signal from module A9 is coupled to the base of vfo buffer Q2 through isolating resistor RI and coupling capacitor C1. Resistor R4 matches the impedance of the input circuit. The vfo buffer output is coupled to the emitter circuit of transistor Q1 through coupling transformer T1. The buffer base bias is determined by a voltage divider composed of R5 and R6.
b. The potential on the base of transistor Q1 is varying at the rf signal frequency and the emitter potential is varying at the vfo frequency; the collector output circuit if tuned to the difference between the two input frequencies; 11.5 mc . The collector circuit consists of the primary of trans former T2 and capacitor C6.
c. The combination of capacitor C3 and resistor R9 neutralizes Q1. Capacitors C4, C5, and C7 are rf bypass capacitors. The combination of capacitor C8 and inductor L1 decouples the module circuit from the 10 -volt dc supply. Resistors R5 and R6 develop base bias for transistor Q2. Resistor R7 is the emitter swamping resistor. Resistor R3 provides damping for the primary of coupling transformer T1.

9. Receiver If. Amplifier Module A21 (fig. 8.5)

The if. amplifiers provide amplification of the $11.5-\mathrm{mc}$ if. signal from $11.5-\mathrm{mc}$ filter module A27. The if. amplifier module consists of five stages of amplification, and a discriminator driver output.
a. If. Amplifiers 01, 02, and 03.
(1) The input from the $11.5-\mathrm{mc}$ filter module is coupled through inductor LI, developed across resistor R2, and coupled to the base of receiver first if. amplifier Q1 through capacitor C 1 . The signal output from Q1 is coupled through capacitor C4 and developed across base resistor R7 of Q2. Amplifier Q2 develops its output signal across resistor R10. This output signal is coupled through capacitor C7 and is developed across base resistor R11 of third if. amplifier Q3. The collector output of Q3 is developed across

Figure 1. First rf amplifier module A3, schematic diagram.

Figure 2. Second rf amplifier module A4, schematic diagram.
the tuned circuit consisting of capacitor C9 and the primary winding of transformer T1.
(2) The combination of resistors R2 and R3, R7 and R8, and R11 and R12 develops base-to-emitter bias for Q1, Q2, and Q3 respectively. Resistors R4, R9, and R13 are emitter swamping resistors. Capacitors C3, C6, and C8 are emitter rf bypass capacitors for Q1, Q2, and Q3 respectively. Resistors R5 and R10 are collector load resistors for amplifiers Q1 and Q2, respectively. Resistor R6 and capacitor C2 form a decoupling network between the +10 -volt circuit of the first if. amplifier and the other stages. The input signal to module A21 can be measured at test jack J 3.
b. Receiver Fourth and Fifth If. Amplifiers Q4 and Q5. Transistors Q4 and Q5, amplify the if. signal, and also limit strong signals.
(1) The out put of Q4 is developed across collector load resistor R17 and is coupled through capacitor C12 to the base of fifth if. amplifier Q5. The collector output of amplifier Q5 is developed across load resistor R21 and applied through coupling capacitor C 15 to the base of receiver discriminator driver Q6.
(2) Resistors R14 and R15, and R18, and R19 develop base-to-emitter bias for Q4 and Q5 respectively. Resistors R16 and R20 are emitter swamping resistors and capacitors C11 and C14 are the emitter bypass capacitors for Q4 and Q5 respec-

TM5820-390-35-5

Figure 3. Receiver mixer module A5, schematic diagram.
tively. Resistors R17 and R21 are collector load resistors for Q4 and Q5, respectively.
c. Receiver Discriminator Driver Q6. The receiver discriminator driver amplifies and limits the $11.5-\mathrm{mc}$ if. signal output from Q5 and applies a strong signal of constant amplitude to discriminator Z1 (fig. 88.
(1) The $11.5-\mathrm{mc}$ signal from Q 5 is coupled through capacitor C15 to the base of Q6. The output of the driver is developed across a tuned circuit consisting of capacitor C18 and the primary of coupling trans former T2. The secondary of transformer T2 and the tuned circuit consisting of capacitor C21 and variable inductor L4 match the output impedance of driver Q6 to the input impedance of discriminator Z1. Resistor R25 and capacitor C19 form a compensating network which improves the response and linearity of the input signal to $\mathrm{Z1}$.
(2) Resistors R22 and R23 develop the base-to-emitter bias for driver Q6. Resistor R24 is the emitter swamping resistor and capacitor C16 is the emitter bypass. Resistor R26 is a filter resistor in the +10 -volt supply line. The combination of capacitors C17, C13, and inductor L3 prevent rf leakage into the supply. The output is coupled through capacitor C20 to Z1. The output from T2 can be measured at test point J 4.

10. Receiver Audio Amplifier Module A25 (fig. 4)

Receiver audio amplifier module A25 amplifies the audio output from the 11.5mc discriminator, $\mathrm{Z1}$, and applies it to the handset.
a. The audio output from $\mathrm{Z1}$ is coupled through coupling capacitor Cl to the base of receiver first audio amplifier Q1. The output signal from Q1 is developed across collector load resistor R4 and is coupled through capacitor C4 to VOLUME control R1 on the front panel (fig. 88). This signal
is also applied to tone squelch module A24 (para 11). The collector signal of amplifier Q1 is fed back through coupling capacitor C3 and voltage dropping resistor R1 to the base of Q1 to supply a small amount of degenerative feedback to minimize audio distortion, and to prevent discriminator loading by presenting a relatively high input impedance to $\mathrm{Z1}$.
b. The audio signal at the moving contact of the VOLUME control is applied through coupling capacitor C5 and isolation resis tor R5 to the base of receiver audio output amplifier Q2. The output signal at the collector of amplifier Q2 is applied to the primary of audio transformer T1. The audio signal is applied from the secondary of T1 to the handset through the contacts of squelch relay K 3 (fig. 88).
c. Capacitor C2 is an rf bypass in the input circuit. The combination of resistors R2 and R3 provides fixed base-to-emitter bias for Q1. The combination of resistors R7 and R8 provides fixed base-to-emitter bias for Q2. Resistor R10 is the collector voltage dropping resistor. Capacitor C7 is a bypass capacitor for noise. Resistor R9 is the emitter swamping resistor; capacitor C6 is the emitter bypass capacitor. Resistor R11 presents a constant output impedance to Q2 when function switch S1 (fig. 88) is in the SQUELCH position and there is no incoming signal. The input signal to module A25 can be measured at test jack J3. Resistor R12 isolates the input circuit of transistor Q1 from external loads introduced at test jack J 3. The output signal from module A25 can be measured at test jack J 4.
d. During transmission, the sidetone audio from module A22 is coupled through capacitor C8 to the input circuit of Q1.
e. Capacitor C11 (in the mainframe (fig. 88)) is an rf bypass capacitor on the $+10-$ volt regulated input to module A25.

11. Tone Squelch Module A24 fig. 5)

a. When the function switch on the front panel is at SQUELCH, +10 volts dc is applied to the tone squelch module. Squelch input amplifier Q1 and squelch emitter fol-

TM5820-398-35-25
Figure 4. Receiver audio amplifier module A25, schematic diagram.
lower Q2 have a common emitter resistor, R6. Transistor Q2 operates near saturation. Audio input signals from the audio amplifier module are applied through isolation resistor R2, attenuated by dropping resistor R3, and are applied, through coupling capacitor C2 to input amplifier Q1. The audio output signals from Q1 are developed across collector load resistor R7 and directly coupled to the base of squelch feedback amplifier Q3. The audio signals amplified by transistor Q3 are developed across a frequency selective (twin T) network which acts as the collector load. Resistors R10 and R11 and capacitor C 5 form one T; capacitors C 3 and C4, and resistor R12 form the other. This network is comparable to an antiresonant circuit; it applies minimum signal voltage to the base of transistor Q2 at the frequency of 150 cps, and maximum signal voltage at other frequencies. The signal applied to the base of Q2 is degenerative to the signal at the
emitter of Q1. If the received audio signal is modulated by a $150-\mathrm{cps}$ tone, minimum degenerative signal is applied to the base of Q2. This action reduces the gain of Q1 at all frequencies except 150 -cps. The bias applied to the base of Q2 is determined only by the voltage divider consisting of resistors R9 and R13; transistor Q2 will conduct and effectively cut off Q1 by virtue of common emitter coupling across R6. As a result, the bias applied to the base of Q3 through the voltage divider, consisting of resistors R8 and R7 and thermistor RT1, is sufficient to cut off this stage.
b. When the $150-\mathrm{cps}$ tone is present with the incoming signal, the collector output of feedback amplifier Q3, a $150-\mathrm{cps}$ tone signal only, is filtered by the combination of resistor R16 and capacitor C8 and is applied through coupling capacitor C7 to the base of amplifier-detector Q4. With no signal input, the base of transistor Q4 is at ground potential. Only the positive half
cycles of the $150-\mathrm{cps}$ signal will cause the amplifier-detector to conduct. The output developed across collector load resistor R18 is a negative-going half-wave rectified signal. The output signal is filtered by capacitor C9 and is directly coupled to the base of relay driver Q5. The negative dc signal causes transistor Q5 to conduct, which causes current to flow through the squelch relay winding. When relay K3 energizes, the receiver circuits will operate.
c. Capacitor Cl is a bypass for the higher audiofrequencies. The combination of resistor R14 and capacitor C6 decouples the emitter circuit of transistor Q3 from the +10 -volt supply. Potentiometer R15, which is the emitter swamping resistor for transistor Q3, is used to adjust the negative feedback to the base of transistor Q1 through dropping resistor R5 to thereby control amplifier gain. Potentiometer R15 is normally adjusted so that an audio input signal of 35 millivolts minimum causes squelch relay K3 to become energized. The combination of the squelch relay coil and resistor R19 provides emitter operating voltage for relay driver Q5. During transmission, with function switch S1 (main-
frame) (fig. 88) at SQUELCH, sidetone audio is applied to the squelch circuit input, while the $150-\mathrm{cps}$ tone is coupled across isolation resistor R1 and superimposed on the sidetone audio signal. This condition permits the operator to hear the sidetone in his handset.

12. Speech Amplifier Limiter Module A22 (fig. 6)

The speech amplifier limiter amplifies the audiofrequency signals from the microphone section of the handset. This module consists of two speech amplifiers and an output limiter stage. The audio output is applied to sidestep oscillator module A20 (para 14) and sidetone output is supplied to receiver audio amplifier module A25 (para 10).
a. Audio signals are coupled through an input matching pad consisting of resistor RI, inductor L1, and capacitor Cl through coupling capacitor C2 to the base of first speech amplifier Q1. The amplified audio output from the collector of Q1 is applied through coupling capacitor C5 to the base of second speech amplifier Q2. The audio signal output from Q2 is applied through

Figure 5. Tone squelch module A24, schematic diagram.
coupling capacitor C7 to the base of output limiter Q3. The output limiter signal is developed across collector load resistors R17 and R18. The audio output to A20 (para) 14) of the sso is coupled through capacitor C10 while the sidetone output to receiver audio module A25 is directly coupled from the junction of resistors R17 and R18. A $150-\mathrm{cps}$ tone signal from the tone generator module is superimposed on the audio output signal to the sso through isolation resistor R19.
b. Resistors R2 and R3 establish base-to-emitter fixed bias for transistor Q1. Resistor R5 is an emitter swamping resistor for Q1. The combination of resistor R4 and capacitor C4 decouples the emitter circuit from the +10 -volt supply. Resistor R6 is the collector load for first speech amplifier Q1. Resistor 11 is the collector load resistor for second speech amplifier Q2. The combination of resistors R7, and R8 and diode CR1 establishes base-toemitter bias for speech amplifier Q2. Because of the negative temperature coefficient of diode CR1, the bias varies
inversely with temperature; therefore, the bias remains constant despite wide variations in temperature. Resistor R10 is the emitter swamping resistor for Q2. The combination of resistor R9 and capacitor C6 decouples the Q2 emitter circuit from any extraneous noise signals. Resistor R11 is the collector load for second speech amplifier Q2.
c. Resistive divider R13 and R14 provides base-to-emitter bias for output limiter Q3. Resistor R16 is the emitter swamping resistor' for Q3. The combination of resistor R15 and capacitor C8 decouples the e mitter circuit from any extraneous noise signals. The combination of inductor L2 and capacitor C9 decouples the emitter from the +10 -volt supply. $\mathrm{Re}-$ sistor R12 is a power supply voltage dropping resistor. Capacitor C22 filters the power supply voltage for transistors Q1 and Q2. The audio output to module A20 can be measured at test jack J 3. Capacitor C10 (in the main frame (fiq. 88)) is an rf bypass capacitor on the +10 -volt regulated input to modules A22 and A23.

TM5920-398-35-22
Figure 6. Speech amplifier limiter module A22, schematic diagram.

13. Tone Generator Module A23 (fig. 7)

The tone oscillator functions only during transmission. The $150-\mathrm{cps}$ output tone is applied to the speech amplifier limiter module (para 12) which frequency-modulates the transmitter output carrier signal with the tone at all times during transmission. The $150-\mathrm{cps}$ tone disables the squelch circuit in the distant receiver.
a. During transmission, +10 -volt dc operating voltage is applied to transistor Q1 which oscillates at 150-cps. The frequency is determined by the resistance-capacitance (rc) phase-shifting network consisting of capacitors $\mathrm{Cl}, \mathrm{C} 2$, and C3 and resistors R1, R2, and R4. Slight adjustment of the frequency can be made by adjustment of FREQ ADJ potentiometer R3. Oscillation is sustained by a feeding back of the collector output through phase-shifting capacitors C1, C2, and C3, to the base of Q1. Each capacitor shifts the signal 60° to provide the regenerative 180° phase shift, Temperature compensation is achieved by thermistor RT2, which provides a temperature compensated bias on the base of Q1, and thermistor RT1, which compensates the phase-shift network.
b. The feedback amplifier is used to in-
sure maximum output with minimum distortion. A portion of the tone oscillator output signal, from the junction of collector resistor R11 and potentiometer R12, is fed back through resistor R5 to the base of transistor Q1 to stabilize the oscillator gain and prevent distortion due to excessive base drive. The 150 -cycle tone output is applied to speech amplifier A22 (paral 12) in the transmitter section and to tone squelch amplifier A24 (bara 11) in the receiver section.
c. The combination of resistors R6, R7, R5, and RT2 and potentiometer R12 provides base-to-emitter fixed bias for oscillator Q1. Resistor R8 is the emitter swamping resistor for oscillator Q1; R9 is the swamping resistor for Q2. Resistor R9 is the emitter swamping resistor for Q2. Potentiometer R12 is the output level adjustment for the $150-\mathrm{cps}$ tone output. The $150-\mathrm{cps}$ tone output from R12 can be measured at test jack J 3.

14. Sidestep Oscillator Module A20 ond Quarter-Wave Network Module A19

The sidestep oscillator (fig. 8) is a modified Hartley type. A quarter-wave network (fig. 9) is connected to the oscillator tuned circuit to stabilize the frequency. The

Figure 7. Tone generator module A23, schematic diagram.
network contributes a stability f actor about 40 times greater than that of a free-running oscillator.
a. Sidestep Oscillator Module.
(1) The audio signal from speech amplifier limiter module A22 para 12) is coupled to the sso through coupling capacitor C6 and isolating resistors R8 and R7, across diode CR1. Diode CR1 is a variable capacitance diode. When the audio signal is applied across the diode, the effective capacitance of CR1 changes as the voltage across it varies. These capacitance changes are coupled through capacitor C4, which blocks the audio signal, across the sso tuned circuit consisting of inductor T1 and capacitor C4. The effective capacitance of the tuned circuit, and the output frequency, varies at the audio rate; therefore, the output frequency of the sso is frequency-modulated.
(2) The ac component of the emitter current flows through part of T1, coupling capacitor Cl , and swamping resistor R2 to the emitter of Q1. This signal induces an in-phase voltage at the top of T1 which is coupled through coupling capacitor C2 to the base of Q1 to sustain oscillation. Resistors R3 and R4 provide base-to-emitter bias for Q1. Resistor R1 is the emitter load resistor. Resistors R5 and R6 establish a dc bias for CR1. Capacitor C5 is an rf bypass capacitor for the audio input circuit.
(3) The frequency-modulated rf output from the oscillator tuned circuit is coupled from a tap on T1 through capacitor C7 to the base of buffer Q2. The buffer stage isolates the sso from load variations. The buffer output is developed across the tuned circuit consisting of transformer T2 and capacitor C8. Resistors R9 and R10 establish the base-to-emitter bias for Q2. Resistor R11 is the emitter voltage dropping resistor; capacitor C9 is the emitter bypass. A pi-type filter
consisting of capacitors C10 and C11 and inductor L1 prevent rf leakage into the +10 -volt dc supply.
The rf output from Q2 can be measured at test jack J 2.
b. Quarter-Wave Network Module A19.
(1) The quarter-wave network is made up of two pi-networks: one for the high band and one for the low band. Each network has a crystal which is used to control the sso frequency. BAND switch S4 (fig. 88) on the front panel selects the proper network.
(2) Each network is an artificial quarter-wave line. An impedance or reactance atone end is reflected as the exact opposite at the other end. This permits the use of a lowimpedance crystal with the highimpedance tank circuit in the sso. If the crystal were connected directly into the tuned circuit, deviation of the sso frequency would not be possible. Inductors L1 and L2 are used to control the amount of coupling between the crystal and the tuned circuit.

15. Variable Frequency Oscillator Module A9 (fig. 10)

Variable frequency oscillator (vfo) Q1 functions as the local oscillator during reception and as the master oscillator during transmission. The vfo is a modified Hartley type that generates a signal in the frequency range of 41.45 mc to 64.45 mc . The tank circuit for Q1 receives an automatic phase control (ape) dc voltage from module All (para 29). The apc voltage is applied to capacitance diode CR1. The effective capacitance of CR1 varies with the voltage applied to it. Capacitance diode CR1 is connected across the vfo tank. Any vfo output frequency deviation will develop an error signal and cause a change in the apc voltage that will change the effective capacitance of CR1; this condition causes the vfo output to return to its proper frequency. The vfo has outputs to the fss buffer, the receiver mixer, and transmitter mixer. The fss buffer provides gain,

Figure 8. Sidestep oscillator module A20, schematic diagram.
isolation, and proper match for the vfo signal applied to the fss. An output from the vfo is directly fed to receiver mixer A5 (para 8) and heterodyned with the incoming signals to produce the $11.5-\mathrm{mc}$ if. The third vfo output is applied to transmitter mixer Q2.
a. VFO Q1.
(1) Collector-to-emitter fee db a c k through capacitor C2 and inductor T1 maintains oscillation in Q1. The tuned circuit consists of inductor TI, trimmer capacitor C9 fixed capacitor C10, capacity diode CR1, and ganged tuning capacitors C1D C1E which are varied by the tuning controls on the front panel. Trimmer capacitor C8 controls the effect of CR1.
(2) Input error signals from the frequency synthesizer system are applied through a filter network consisting of inductor L4 and capacitor C7, and through isolating resistor R9 to capacitance diode CR1. The capacitance of CR1 varies directly with the applied error voltage to correct the output fre-
quency of the vfo. The automatic phase control voltage from module All can be measured at test jack J 3.
(3) Resistors R1 and R2 develop the base bias for Q1. Resistor R3 is the emitter swamping resistor. The rf signal at the tuned circuit can be measured at test jack J 4.
(4) Capacitor C8 (in the main frame (fig. 88)) is an rf bypass capacitor on the automatic phase control voltage line. Capacitor C9 (in the main frame (fig. 88) is an rf bypass capacitor on the +10 -volt regulated input line.
b. Frs Buffer Amplifier Q3.
(1) The output from the vfo is applied through isolation resistor R11 and coupling capacitor C11 to the base of Q3. Transformer T2 couples the output of this stage to the input of the fss.
(2) Voltage-divider resistors R12 and R13 develop the fixed base bias for Q3. Resistor R14 is the emitter swamping resistor. Capacitor C12 is the rf bypass capacitor for the

NOTES:

1. UNLESS OTHERWISE INDICATED, RESISTANCES ARE IN OHMS, CAPACITANCES ARE IN UUF.
2. REFERENCE DESIGNATIONS ARE ABBREVIATED. REFERENCE DESIGNATIONS ARE ABEREVIATED.
PREFIX THE PART DESIGNATION WITH AIG, EXCEPT JI5
3. ■ INDICATES EQUIPMENT MARKING.
4. CONNECTOR VIEWED FROM PIN OR RECEPTACLE SIDE.

TM5820-398-35-19
Figure 9. Quarter-wave network module A19, schematic diagram.
emitter. Inductor L3 and capacitor C13 form a filter network to prevent rf leakage into the power supply.
c. Transmitter Mixer Q2.
(1) The transmitter mixer functions only during transmission. The sso input from A20 (para 14) is applied through isolation resistors R8 and R16 and coupling capacitor C3 to the base of Q2. The vfo output is applied through isolating resistors R10 and R16 and coupling capacitor C3 to the base of Q2. Resistor R4 is a dc return. The two signals are heterodyned in this stage; the output from the collector is applied to transmitter first rf amplifier module A8. The collector returns to ground through the primary of T1 in module A8 (para 16).
(2) Voltage divider resistors R5 and R6 develop the fixed bias for Q2. Resistor R7 is the emitter swamping resistor. Capacitor C5 is an emitter rf bypass capacitor for the Q2. Inductor L1 and capacitor C6 form a filter network to prevent rf leakage into the power supply.
16. Transmitter First Rf Amplifier

Module A8
(fig. 11)
Transmitter first rf amplifier module

A8 amplifies the rf input from variable frequency oscillator module A9 (para 15).
a. The signal from A9 is coupled from the top of the tapped secondary of T1 through coupling capacitor C2 to the emitter of Q1 and from the bottom of the secondary of T1 through coupling capacitor C3 to the base of Q1. The output at the collector is coupled through BAND switch SIB to either the low- or high-band tuned output circuit.
b. Separate tuned output circuits are used for the high and low bands. Switch S1 selects the circuit when the BAND switch on the front panel is positioned.
(1) Low band. The low-band tuned output circuit consists of inductor T2, fixed capacitor C7, trimmer capacitor C6, and ganged tuning capacitor C1C (fig. 88).
(2) High band. The high-band tuned output circuit consists of transformer T3, fixed capacitor C10, trimmer capacitor C9, and ganged tuning capacitor C1C.
c. Capacitors C4 and C5 and inductor L3 form a filter which prevents rf variations from reaching the -45 -volt dc supply. The combination of resistors R2 and R3 provides fixed bias, and resistor R1 is the emitter swamping resistor for Q1. Inductors L1 and L2 are rf chokes. Capacitor C8 is inserted into the high-band output tuned circuitry by S1C to shift the effective range of ganged tuning capacitor C1C by

Figure 10. Variable frequency oscillator module A9, schematic diagram.

Figure 11. Transmitter first rf amplifier module A8, schematic diagram.
decreasing the total capacitance. The rf input to module A8 can be measured at test jack J 2.
d. Inductor L2 and capacitors C6 and C7 (in the main frame (fig. 88)) form a filter in the +10 -volt regulated input to module A8.
17. Transmitter Second Rf Amplifier Module A7 (fig. 12)

Transmitter second rf amplifier module A7 amplifies the signal from transmitter first rf amplifier module A8 (para 16). Module A7 consists of a single transistor amplifier, a BAND switch, and a tuned output circuit.
a. The output signal from A8 is coupled from the top of the center-tapped secondary of T1 through coupling capacitor C4 to the emitter of Q1 and from the bottom of the secondary through coupling capacitor C5 to the base of Q1. The output at the
collector is coupled through BAND switch S1A to either the low- or high-band tuned output circuit.
b. Separate tuned output circuits are used for the high and low bands. Switch S1 selects the circuit when the BAND switch is positioned.
(1) Low band The low-band tuned output circuit consists of inductor T3, trimmer capacitor C9, and ganged tuning capacitor C1B (fig. 88), which is varied by the tuning controls on the front panel. The output is applied from a tap on T3 through S1B to A6.
(2) High band. The high-band tuned output circuit consists of the primary of transformer T2, fixed capacitor C8, trimmer capacitor C6, and ganged tuning capacitor CIB. The output is applied from the secondary of T2 through SIB to A6.

Figure 12. Transmitter second $r f$ amplifier module A7, schematic diagram,
c. Capacitors C2 and C3 and inductor L1 prevent rf variations from reaching the -45 -volt dc supply. The combination of resistors R2 and R3 provides fixed bias, and resistor R1 is the emitter swamping resistor Q1. Inductors L2 and L3 are rf chokes. Capacitor C7 is inserted into the high-band output tank circuit by S1C to shift the effective range of ganged tuning capacitor C1B by decreasing the total capacitance. The rf input to module A7 can be measured at test jack J 2.
d. Inductor L1 and capacitor C5 (in the main frame (fig. 88)) form a filter in the -45-volt input to module A7.
18. Transmitter Intermediate Power Amplifier Module A6
(fig. 1B)
Transmitter intermediate power amplifier module A6 amplifies the rf input from transmitter second rf amplifier module A7 (para 17). The transmitter intermediate power amplifier module consists of a single intermediate power amplifier, a BAND switch, and a tuned output circuit for each of the two bands. The output of A6 is applied to the grid of tube V1.
a. The signal from A7 is coupled from the top of the center-tapped secondary of T1 through coupling capacitor C1 to the emitter of Q1 and from the bottom of the secondary of T1 through coupling capacitor C2 to the base of Q1. The output at the collector of Q1 is coupled through BAND switch S1B to the low-or high-band tuned output circuit.
b. Separate tuned output circuits are used for the high and low bands. Switch S1 selects the proper circuit when the BAND switch is positioned.
(1) Low band. The low-band tuned output circuit consists of inductor T2, trimmer capacitor C6, and ganged tuning capacitor C1A (fig. 88), which is varied by the tuning controls on the front panel to select the desired frequency within the low band. The output is applied from a tap of T2 through S1A and coupling capacitor C3 in the main frame (fig. 88) to the grid of V1.
(2) High band. The high-band tuned output circuit consists of inductor T3, trimmer capacitor C8, and ganged tuning capacitor C1A. The OUTPUT is applied from a tap of T3 through S1A and coupling capacitor C3 in the main frame (fig. 88) to the grid of V1.
c. The combinations of inductor L1 and capacitor C3, choke rf L2 and capacitor C4, and rf choke L3 and capacitor C5 keep rf variations out of the -45-volt dc supply. Resistor R1 is an emitter swamping resistor. The combination of resistors R2 and R3 form a voltage divider which supplies base bias for transistor Q1. Capacitor C7 is inserted into the high-band output tank circuit by S1C to shift the effective range of ganged tuning capacitor C1A by decreasing the total capacitance. The rf input to module A6 can be measured at test jack J 2.

19. Power Amplifier A29 (fig. 14)

Power amplifier A29 is a pentode-type rf amplifier stage which, in conjunction with power amplifier (pa) tank module A2 (para 20), develops the required rf power output to the antenna. Plate, screen-grid, and bias voltages for power amplifier tube V1 are supplied by de-to-de converter module A1 (para 31). The dc filament voltage is supplied by battery BT1.
a. The rf input signal from transmitter ipa A6 (para 18) is applied through parasitic suppression network $\mathrm{Z1}$ to the control grid of V1. The rf signal at the plate of tube V1 is developed across the lowor high-band tank circuits located in power amplifier (pa) tank circuit module A2.
b. A bias voltage of -39.5 volts dc is applied to the control grid of tube V1 through resistor R2, inductor L1, and suppressor network Z1. Resistor R1 is a voltage dropping resistor in series with the - 45 -input circuit. There is a constant voltage drop of approximately 5.5 volts dc across Zener diode CR1 which is applied a fixed grid bias voltage for V1. The combination of inductor L1, resistor R2, and capacitor C 1 prevents rf leakage into

NOTES:

1. UNLESS OTHERWISE indicated, resistances ARE IN OHMS, CAPACITANCES ARE IN UF.
2. REFERENCE DESIGNATIONS ARE ABBREVIATED.

PREFIX THE PART DESIGNATION WITH AG, EXCEPT $J 5$ AND J 6.
3. SWITCH SI VIEWED FROM CONTROL END IN COUNTERCLOCKWISE ROTATION.
4. CONNECTOR VIEWED FROM PIN OR RECEPTACLE SIDE.

Figure 13. Transmitter ipa module A6, schematic diagram.
the -45-volt supply. A pi-type filter consisting of capacitors C2 and C5 and inductor L2 prevents rf variations on the filament of tube V2 and rf leakage into the 2.5 -volt filament supply. The combination of plate inductor L3 and bypass capacitor C4 prevents rf leakage into the +125 -volt power supply. Resistor R3 is a screengrid voltage dropping resistor; capacitor C3 is the screen-grid bypass capacitor.

20. Power Amplifier Tank Module A2

 (fig. 15Power amplifier tank module A2 is used as both the output load for power amplifier tube V1 (para 19) (in A29), and as the input circuit for receiver first rf amplifier module A3 (para 6). Module A2 consists of a low- and a high-band tuned circuit, and a BAND switch.
a. BAND switch S1 selects one of two frequency bands. When S1 is in the lowband position (30-52), the tuned circuit
consists of transformer T1, trimmer capacitor C1, and inductor L1. When S1 is in the high-band position, the tuned circuit consists of transformer T2, trimmer capacitor C1, and inductor L1. When S1 is in C5. Tuning capacitor C2B (fig. 88) is connected in parallel with either T1 or T2 through S1C.
b. During transmission, the output from transmitter power amplifier tube V1 is applied from J 7 through S1AJ 1, contact 2 and contact 1 or 3 of S1A to the selected tuned circuits (a above). The output signal from the tuned circuit is applied through contact 1 or 3 and contact 2 of S1D, through terminal 1 of 2AJ 1 and terminal 11 of J 7 to the antenna. Input to the receiver through S1B is prevented by the energized contacts of relay K1 (fig. 88). During reception, signals from the antenna are passed through S1D to the selected tuned circuit. Relay K1 (fig. 88) is not energized. During reception, energy from the tuned circuit is coupled by inductor

Figure 14. Power amplifier A29, schematic diagram.

L1 (low band) or capacitor C4 (high band) through switch SIB, through pin 3 of 2AJ 1 and pin 9 of J 7 to receiver first rf amplifier module A3.
c. On the low-band tuned circuit, the slug in transformer T1 is an alignment adjustment for the low frequency end, while capacitor C1 is an alignment adjustment for the high frequency end. Inductor L1 provides high-impedance coupling for the receiver to minimize effects of lead length and to reduce spurious responses and radiations.
d. On the high-band tuned circuit, the slug in transformer T2 is an alignment adjustment for the low frequency end, while capacitor C2 is an alignment adjustment for the high frequency end. Capacitor C4 provides high-impedance coupling for the receiver on the high band. Capacitor C5, in conjunction with capacitor C4, provides the proper impedance matching to the receiver. Capacitor C3 is connected in series with C2B by S1C to reduce the
ratio of capacitance change on the high band.

21. Antenna Looding Network A28

 fig. 16)The antenna loading network matches the short or long antenna to the receivertransmitter by means of tuned coils and switching assemblies.
a. When the long antenna is used, a plunger and a leaf spring engages microswitches S2 and S3, closing contacts 2 and 3 on each switch. The rf signal is applied through contacts of BAND switch S1 to the power amplifier tank (C2A stator) (fig, 88). Inductor L4 is inserted in parallel to change the electrical length of the antenna during operation in the low band.
b. When the short antenna is used, microswitches S2 and S3 are not actuated. The rf signal from the antenna is applied directly to switch S1. When the short antenna is used inductor L4 is not connected.

Figure 15. Power amplifier tank module A2, schematic diagram
c. The tuning controls tune inductors L1, L2, and L3, which are in series with capacitors C2, C1, and C3, respectively, to resonate the antenna in the low and high bands. When the BAND switch is in the low position, inductor L3 and capacitor C3 are placed in the circuit; when the BAND switch is in the high position, inductors L1 and L2 and capacitors C2 and Cl are placed in the circuit.

22. Frequency Synthesizer System First Mixer Module A14 (fig. 17)

The fss first mixer module, A14, heterodynes the output of vfo module A9 (para 15 with the output of I-me spectrum generator module A15 (para 23) to produce a band of frequencies around 53 mc . This output is supplied to the $53-\mathrm{mc}$ filter A13 (para 25). The fss first mixer contains the fss first buffer amplifier and a mixer circuit.
a. Fss First Mixer Buffer Q1.
(1) Fss first mixer buffer Q1 provides isolation and low-power gain. It has sufficient bandwidth to pass the
$41.45-\mathrm{mc}$ to $64.45-\mathrm{mc}$ output of the fss buffer in A9. The combination of resistors R1 and R2 plus the input impedance to Q1 provides the proper termination for the vfo buffer amplifier. Capacitor Cl is a coupling capacitor. The amplifier output of Q1 is coupling capacitor. The amplified output of Q1 is coupled to the fss first mixer transformer T1. Resistor R6 increases the frequency response of T1.
(2) Resistors R3 and R4 form a voltage divider which develops the fixed portion of the emitter-to-base bias for transistor Q1. Resistor R5 is the emitter swamping resistor. Capacitor C2 is an rf bypass capacitor for the emitter of Q1.
b. The signal inducted to the secondary windings of transformer T1 is coupled through push-pull diodes CR1 and CR2 to the tuned primary of transformer T2. Capacitor C3 and the primary of transformer T2 form a tuned circuit. The input from 1-mc spectrum generator A15 is applied through a pulse-shaping network, consist-

Figure 16. Antenna loading network A28, schematic diagram,

NOTES:

1. UNLESS OTHERWISE INDICATED, RESISTANCES ARE IN OHMS, CAPACITANCES ARE IN UUF.
2. REFERENCE DESIGNATIONS ARE ABBREVIATED. PREFIX THE PART DESIGNATION WITH AI4, EXCEPT $\mathbf{J} 20$.
3. Connector viewed from pin or receptacle side.

Figure 17. First mixer module A14, schematic diagram.
ing of diode CR3, capacitor C5, and resistor R8, to the center tap of the primary of transformer T2. It is terminated in a tuned network consisting of capacitor C4, inductor L1, and resistor R7. The network is broadly tuned to 7 mc . The spectrum generator output contains the 1st through the 12th harmonic of the fundamental 1-mc pulse. Since the signal level of each succeeding harmonic is reduced in amplitude from the signal level of the preceding harmonic, the terminating tuned network is used to equalize the harmonic components of the generated spectrum.
c. The mixed signal in the secondary of transformer T2 is approximately 53 mc . The output of the fss first mixer is applied to $53-\mathrm{mc}$ filter A13. The rf signal input from Q1 to the fss mixer can be measured at test jack J 2. The rf input from module A15 to the fss mixer can be measured at test jack J 3.

23. 1-Mc Spectrum Generator Module A15 (fig. 18)

The 1-mc spectrum generator module, A15, produces harmonics of the $1.0-\mathrm{mc}$ crystal-controlled oscillator for injection into fss mixer module A14 (para 22). Module A15 consists of a 1-mc cyrstal oscillator and a pulse generator.
a. The 1-mc crystal oscillator is a modified Hartley type. Transistor Q1, fixed capacitor C2, coil T1, and crystal Y1 form the oscillator circuit. Resistors R1 and R2 form a voltage divider which provides the fixed bias portion of emitter-base bias. Resistor R3 is the emitter swamping resistor for Q1. Capacitor C1 bypasses the base to ground.
b. The sinusoidal 1-mc oscillations are applied to pulse generator Q2 through coupling capacitor C3. The pulse generator is normally cut off by the reverse base bias applied through, R4, and conducts only on the negative half cycles of the 1mc signal. a positive pulse, rich in harmonics, is developed in the collector output. This output is applied across the transformer T2 and coupled to first mixer module A14.
c. Capacitor C5 broadly tunes output
transformer T2 to 7 mc . Capacitor C4 is an emitter bypass. Resistor R5 is the emitter swamping resistor for Q2. The 10 -volt dc supply is decoupled from the 1mc spectrum generator by coil L1 and capacitor C6.

24. Interval Oscillator Module A10 (fig. 19)

Interval oscillator module A10 supplies the fss with two crystal-controlled signals. This module has two crystal-controlled oscillators; Q1, generates frequencies of 46.85 mc to 47.75 mc in $100-\mathrm{kc}$ increments, and Q2 generates frequencies of $5.55,5.60$, and 5.65 mc .
a. $46.85-47.75-\mathrm{Mc}$ Oscillator Q1.
(1) Transistor Q1 is connected in a crystal-controlled oscillator that uses 1 of 10 crystals. Crystal selection is determined by the kc tuning control on the front panel. The toned collector circuit is composed of capacitors C1 and C2 and the primary of transformer T1. Oscillation is sustained by feeding back part of the energy in the collector tank through capacitor C3 and resistor R2. Resistor R4 is the tuned circuit damping resistor.
(2) Resistors R1 and R2 form a voltage divider network which develops the base bias for Q1. Resistor R3 is the emitter swamping resistor. Resistor R18, inductor L1, and capacitor C 16 form a filter network in the +10 -volt supply to Q1. The rf output of Q1 can be measured at test jack J 2.
b. Oscillator $5.55,5.60$, or 5.65 Mc Q2.
(1) Transistor Q2 is connected in a crystal-controlled oscillator circuit that uses one of four crystals (three frequencies) to generate the frequency reference for p has e comparison in module A17. The tuned collector circuit is made up of capacitors C9 and C10 and the primary of transformer T2. Oscillation is sustained by feeding back part of the energy in the collector circuit from the junction of C9 and

NOTES:

. UNLESS OTHERWISE INDICATED, RESISTANCES ARE IN OHMS CAPACITANCES ARE IN UUF.
2. REFERENCE DESIGNATIONS ARE ABBREVIATED. 2. REEFIX THE PART DESIGNATION WITH AIS, EXCEPT J2I.
3. connector viewed from pin or receptacle side.

Figure 18. 1-mc spectrum generator module A15, schematic diagram.

C10 to the selected crystal ((2) below), and the contacts of S1A to the emitter of Q2; this action completes the regenerative circuit.
(2) Crystal selection is determined by the operating mode (received or transmit) and by the frequency selected by the kc tuning control. When the RT-505/PRC-25 is in the receive mode, +10 volts is applied through normally closed contacts 4 and 6 of front-end relay K1 (fig. 88), through pin E of connectors J 12 and A10J 1, and current-limiting resistor R5 to the anode of CR1. This positive voltage forward biases CR1; the diode conducts heavily and allows the regenerative circuit to crystals Y11 and Y12 to be completed. If the RT-505/PRC25 is operating on a 100-kc channel ($31.10 \mathrm{mc}, 74.20 \mathrm{mc}$, etc), S1A will be in the position shown and crystal

Y11 (5.65 mc) will be selected through contacts 8 and 11 of S1A; this action completes the regenerative circuit to the emitter of Q2. If the RT-505/PRC-25 is operating on a $50-\mathrm{kc}$ channel (31.15 $\mathrm{mc}, 74.25 \mathrm{mc}$, etc.), S1A will be turned clockwise one position from that shown and crystal Y12 (5.60 mc) will be connected through contacts 8 and 9 of S1A; this action completes the regenerative circuit to the emitter of Q2.
(3) When the RT-505/PRC-25 is in the transmit mode, front-end relay K1 (fig. 88) is energized, contacts 4 and 6 open, and +10 volts is no longer available for diode CR1. The diode is now reverse-biased and prevents the selection of crystal Y11 or Y12. Relay K1 contacts 4 and 7 are closed and apply+ 10 volts through pin K of connectors J 12
and A10J 1 and current-limiting resistor R7 to the anode of CM. This positive voltage forward biases CR2; the diode conducts heavily and allows the regenerative circuit to crystals Y13 and Y14 to be completed. If the RT-505/PRC-25 is operating on a $100-\mathrm{kc}$ channel (31.0 $\mathrm{mc}, 74.20 \mathrm{mc}$, etc), S1A will be in the position shown and crystal Y13 $(5.60 \mathrm{mc}$) will be selected through contacts 8 and 11 of S1A to complete the regenerative circuit to the emitter of Q2. If the RT-505/ PRC-25 is operating on a $50-\mathrm{kc}$ channel ($31.15 \mathrm{mc}, 74.25 \mathrm{mc}$, etc), S1A will be turned clockwise one position from that shown and crystal Y14 (5.55 mc) will be selected through contacts 8 and 9 of S1A to complete the regenerative circuit to the emitter of Q2.
(4) Capacitor C7 is an rf bypass capacitor. Capacitor C8 is a coupling capacitor between the base and collector circuit. Resistors R10, R11, and R12 develop fixed bias; resistors R8 and R9 are emitter swamping resistors for Q2.
c. Buffer Q3.
(1) The output from oscillator Q2 is coupled through transformer T2 to the base and emitter of Q3. The buffer isolates Q2 from any varying loading effects.
(2) Resistors R14, R15, and R16 develop fixed-base bias. Resistor R13 is the emitter swamping resistor. Capacitors C11, C12, and C13 are rf bypass capacitors. Inductor L2 and capacitor C15 form a decoupling network to prevent rf leakage into the power supply. The rf output from Q3 can be mess ured at test jack J 3.
25. 53-Mc Filter A13
(fig. 20)
The 53-mc filter has two input signals.
a. The output signal from $100-\mathrm{kc}$ interval oscillator module A 10 is coupled through isolation resistor R1 and a match-
ing network consisting of capacitors C6 and C7 and transformer T3 to fss second mixer module A12 (para 26). This circuit minimizes spurious frequency injection into the second mixer.
b. The $53-\mathrm{mc}$ signal from first mixer module A14 is coupled to the filter through transformer T1 to a triple-tuned network. The three tuned circuits are the secondary of T1 and C1, L1 and C3, T2 and C5. Capacitors C2 and C4 are couplling capacitors. This triple-tuned network provides a $2-\mathrm{mc}$ bandpass at the 3 decibel (db) points. The output of this network is coupled to second mixer module A12.

26. Frequency Synthesizer System Second Mixer Module A12 (fig. 21)

The fss second mixer module heterodynes the output from $53-\mathrm{mc}$ filter A13 (para 25), with the $46.85-\mathrm{mc}$ to $47.75-\mathrm{mc}$ output of the $100-\mathrm{kc}$ interval oscillator (applied through A13) to produce an fss if. of $5.55,5.60$, or 5.65 mc . This output is applied to fss if. amplifier module A18 (para 27).
a. The $53-\mathrm{mc}$ input from module A13 is coupled through capacitor C1 to the base of Q1. The $46.85-\mathrm{mc}$ to $47.75-\mathrm{mc}$ input from A13 is coupled through capacitor C2 to the emitter of Q1. Transistor Q1 heterodynes these two input signals; the resultant output signals at the collector of Q1 are applied to the frequency selective network.
b. The frequency selective network is composed of capacitors C4 through C7, variable transformers T1 and T2, and variable inductors L1 and L2. The outputs from Q1 are the two original frequencies plus their sum and difference. The frequency selective network passes only the difference frequency. The network is a bandpass filter having a flat characteristic resonant frequency of 5.6 mc .
c. Resistor R5 and capacitor C 3 filter rf signals from the +10 -volt dc supply. Resistors R1 and R2 provide the fixed-base bias. Resistor R3 is the emitter swamping resistor. Resistors R4 and R6 terminate

Figure 19. Interval oscillator module A10, schematic diagram.

Figure 20. 53-Mc filter module A 13, sthematic diagram
the filter properly and minimize variations due to the varying impedances of transistors. The rf output of module A12 can be measured at test jack J 2.

27. Frequency Synthesizer System If.
 Amplifier Module A18 (fig. 22)

The fss if. amplifier module (A18) amplifies the $5.6-\mathrm{mc}$ signal input from fss second mixer module A12 (para 26) and applies it to fss discriminator driver module All (bara 29) and phase comparator module (para 28) A17. The fss if. amplifier circuit consists of two cascaded, double-tuned, transformer-coupled amplifier stages. The signal amplitude applied to the fss if. amplifier is sufficient to cause limiting.
a. First If. Amplifier Q1.
(1) The $5.6-\mathrm{mc}$ if. signal from module A12 is coupled through capacitor C1 to the base of Q1. The signal output is developed across the tuned collector circuit, consisting of variable inductor L1 and capacitor C3. Resistor R4 broadens the frequency response of the tuned circuit. The signal developed across this tuned circuit is coupled through capacitor C4 to a second tuned circuit consisting of capacitor C5 and the primary of tuned coupling transformer T1. The
center-tapped secondary winding of transformer T1 neutralizes Q2 (b below).
(2) Resistors R1 and R2 form a volt-age-divider network to develop the fixed-bias portion of the emitter-to-base bias of of Q1. Resistor R3 stabilizes the emitter current. Capacitor C 2 is an rf bypass capacitor for the Q1 emitter.
b. Second If. Amplifier Q2.
(1) The amplified $5.6-\mathrm{mc}$ signal from transistor Q1 is applied from the secondary of transformer T1 through coupling capacitor C6 to the base of Q2. The signal output is developed across the tuned collector circuit consisting of variable conductor L2 and capacitor C8. The signal developed across this tuned circuit is then coupled through capacitor C9 to the second tuned circuit, consisting of capacitor C10 and the primary of transformer T2.
(2) Resistors R6 and R7 form a voltagedivider network which develops the fixed-bias portion of the emitter-to-base bias of Q2. Resistor R5 stabilizes the emitter current. Capacitor C7 is a bypass capacitor for the top of transformer T1. Resistor R8 is a load for the tuned circuit. Resistor R10, across the secondary of transformer T2, provides the proper

Figure 21. Second mixer module A12, schematic diagram.
output termination and minimizes variations due to discriminator loading. The combination of resis-. tor R9 and capacitor C11 prevents rf leakage into the +10 -volt dc supply.
(3) The rf output of module A18 can be measured at test jack J 2.
28. Phase Comparator Module A17 (fig. 2B)
Phase comparator module A17 contains phase comparator driver Q1 and the phase comparator. The phase comparator compares the phase of the signals from f ss if. module A18 (para 27) with those from interval oscillator module AIO (para 24). The input signal from A18 is initially generated by the vfo; the frequency of this signal may
be varying. The signal from A10 is generated by a crystal-controlled oscillator; this signal is the reference frequency. The dc output voltage, proportional to the phase difference, is the automatic phase control (ape) voltage applied to vfo module A9 (para 15). If the two signals are in phase, the apc voltage will assume a reference level to maintain the vfo output frequency. If a phase difference is detected, an error voltage is developed in the phase comparator. This change in apc voltage opposes any change in vfo output frequency by returning the vfo output to its correct frequency, and establishes a phase lock.
a. Phase Comparator Driver. The input from fss if. module A18 is coupled through capacitor Cl to the base of phase comparator driver Q1. The amplified signal is coupled to the phase comparator by

TM5820-398-35-18
Figure 22. Speech amplifier limiter module A18, schematic diagram.
transformer T1. Resistors R1 and R2 form a voltage divider which provides the fixedbias portion of the emitter-to-base bias. Emitter resistor R3 establishes the fixed portion of the emitter-to-base bias and stabilizes the emitter current. Capacitor C2 is a bypass capacitor for the Q1 emitter. Capacitors C5 and C6 and inductor L1 form a pi-filter which prevents any rf signals from entering the 10 -volt dc Supply
b. Phase Comparator. The phase comparator consists of the tapped secondary winding of T1, coupling capacitors C3 and C4, diodes CR1 and CR2, and resistors R4 and R5. The output voltage of the phase comparator depends on the phase relationship of the two signals applied to the circuit. The voltage output is pivoted about a +3.5 -volt dc reference level at the junction of resistors R6 and R7 which is applied to the center tap of transformer T1 and, through the secondary winding of transformer T3 in module A10, to the junction of diodes CR1 and CR2. This voltage is established by the divider action of resistors R6 and R7 which are connected across the 10 -volt power supply. Capacitor C7 is an rf bypass capacitor.
(1) The signal induced in the secondary of T1 is coupled through capacitors C3 and C4 to diodes CR1 and CR2, respectively, producing equal and opposite voltages. E1 is applied to

CR1, and E2 to CR2. (The E designations are for purposes of reference only.)
(2) The phase comparator also receives an input signal from crys -tal-controlled interval oscillator module A10 which is injected at the center tap of transformer T1 and the junction of diodes CR1 and CR2. This signal voltage (E3) is exactly 90° out-of-phase with voltages E1 and E2 when the frequency of the $5.6-\mathrm{mc}$ input, developed initially by the vfo, is the same as the crystalcontrolled input frequency. This condition exists when the vfo is on frequency. When the two input signals are 90° out-of-phase, the dc output voltage, which is the vectorial sum of voltages E1 plus E3 and E2 plus E3, will be at the +3.5 -volt reference level.
(3) Diode CR1 receives a voltage equal to the sum of EI and E3; diode CR2 receives a voltage equal to the sum of E2 and E3. The diodes rectify the signals, and dc voltages appear across load resistors R4 and R5. When the signal voltages are equal, the output voltages across resistors R4 and R5 are equal, and the total voltage across both resistors, in respect to the junction of resistors R4 and R5, is canceled out,

NOTES:

unless otherwise indicated, resistances are in ohms; CAPACITANCES ARE IN UUF
r reference designations are abbreviateo.
PREFIX THE PART DESIGNATION WITH AIT, EXCEPT JI3.
3. CONNECTOR VIEWED FROM PIN OR RECEPTACLE SIDE.

Figure 23. Phase comparator module A17, schematic diagram.
since E1 and E2 voltages are exactly 180° out-of -phase.
(4) If the vfo frequency increases or decreases, changing the $5.6-\mathrm{mc}$ input signal, the 90° vector relationship between the E1 and E2 signal and the E3 signal no longer exists. The change in frequency is equivalent to an E1-E2 phase shift with respect to E3. The resultant vectors of E1 plus E3 and E2 plus E3 are no longer the same length (since the 90° vector relationship of E1-E2 and E3 no longer exists), and the ratio of voltage across the diodes changes. The voltages developed across load resistors R4 and R5 are now unequal, and the dc output will be changed from the +3.5 -volt reference level.
(5) The amount the reference level is changed is a function of the phase difference detected in the comparator; the direction of change is a
function of vfo frequency shift (increase or decrease). When the frequency increases, the dc output voltage is less than the reference level; when the frequency increases, it is greater than the reference level. The phase comparator output voltage is applied through the antihunt network module All to the apc line. The change in apc voltage corrects the vfo output frequency and returns the apc voltage to the reference level when a phase lock is established.
(6) The control voltage output of module A17 can be measured at test jack J 2.
29. Frequency Synthesizer System Discriminator Driver Module All
(fig. 24)
The fss discriminator driver module All extends the captive range of the fss. It receives two input signals and develops the
apc voltage in its output circuit. The two input signals are the fss if. signal from the fss if. amplifier module A18 (para 27) and a dc voltage from phase comparator module A17 (para 28). The apc voltage is applied to the capacitance diode circuit of the vfo. If aphase-locked condition exists (that is, if the vfo is on frequency), the apc voltage will assume the reference level to maintain the vfo output on frequency. If the vfo output frequency changes, the fss dis criminator will develop ac and dc hunting voltages. These error signals change the apc voltage applied to the frequency control circuit of the vfo, which shifts the vfo output frequent y to within the pull-in and hold-in range of the phase comparator.
a. A signal from the fss if. module A18 is applied to the base of discriminator driver Q1 through coupling capacitor C1. The signal is amplified by Q1 and applied to the discriminator (b below). Base biasing voltage for Q1 is provided by voltagedivider resistors R1 and R2. Resistor R3 is the emitter swamping resistor for Q1. Resistors R4 and R13 provide series and shunt loading, respectively, for the collector tuned circuit. Capacitor C2 is an rf bypass capacitor for the Q1 emitter.
b. The discriminator is a Travis-type. The tuned circuit, consisting of the transformer T1 secondary and capacitor C3, is tuned to 5.95 mc . The tuned circuit, consisting of transformer T2 secondary and capacitor C4, is tuned to 5.25 mc . At the center frequency of 5.6 mc , both tank circuits have equal currents induced in them. The voltage rectified by diode CR1 and developed across resistor R5, is equal to the voltage rectified by diode CR2 and developed across resistor R6. Since these voltages are equal but of opposite polarity, there is no output. At frequencies above or below the signal center frequency, the voltages developed across resistors R5 and R6 are unequal and a resultant output voltage is developed. Capacitors C5 and C6 rf filter capacitors across load resistors R5 and R6, respectively. The discriminator output can be measured at test jack J 2 .
c. The discriminator output is pivoted about the control voltage input from A17
at the junction of resistors R8 and R9. The larger portion of the discriminator voltage is developed across resistor R8, and is applied in series with the comparator output to the antihunt network (d below) through coupling capacitor C9 as the ac portion of the apc voltage. The remainder of the dis criminator voltage is developed across resistor R9; its polarity is opposite to that developed across resistor R8. This voltage, plus the phase comparator output dc voltage, is applied to the antihunt network (d below) through discriminator load resistor R10 as the dc portion of the apc voltage. Resistor R7, together with capacitors C7 and C8, determine the reaction time of the discriminator driver.
d. Resistors R11 and R12 together with capacitor C10 form the antihunt network for the fss loop. Both the ac and the dc portions of the apc voltage are applied through this network to the vfo. However, the main effect will occur on the ac portion (developed by the fss discriminator) since the higher the frequency of the error voltage, the higher the attenuation (by virtue of the ac shunting through capacitor C10). To prevent regeneration, this antihunt network damps the fss loop gain and stops the hunting action of the vfo when the phase comparator acquires control of the vfo.
e. Choke L1 and capacitor C11 form a decoupling network to prevent rf from being coupled into the power supply.
30. Voltage Regulator Moduk A16 (fig. 25)
The voltage regulator circuit supplies the entire fss system, including the vfo, with a regulated +10 volts dc. The regulator uses a high power germanium transistor (Q1) as a series regulator in conjunction with a medium-power silicon transistor (Q2). Transistor Q2 operates as a dc amplifier. The combination of resistor R5 and diode CR2 forma voltage-divider network, with diode CR2 maintaining the base of the dc amplifier at a constant reference voltage. The combination of diode CR1 and emitter resistor R4 forms a voltage divider. Any variation in output voltage appears across resistor R4, since CR1

Figure 24. Fss discriminator module A11, schematic diagram.
maintains a constant voltage drop. When the output voltage increases due to a decrease in load or an increase in the input voltage, a proportional positive voltage increase appears at the emitter of dc amplifier Q2 and results in more current flow through Q2. The base of series regulator Q1 goes more positive; conduction through Q1 decreases, which effectively increases the impedance of series regulator Q1. The effect is a decrease in the regulator output; the circuit has compensated for the increase in output voltage. The opposite series of events takes place when the output voltage decreases because of a load increase or input voltage decrease. The regulator provides two +10 -volt outputs, one filtered and one unfiltered. The filtered output is filtered by a pi-filter network consisting of coil L1 and capacitors C1 and C2. The filtered output is supplied to modules A14 (para 22) and A15 (para23). The unfiltered output is supplied to the remainder of the circuits requiring regulated +10 volts. The unregulated input voltage to module A16 can be measured at test jack J 2; the regulated output voltage from module A16 can be measured at test jack J 3.

31. Dc-to-Dc Converter Module AI (fig. 26)

The dc-to-dc converter module supplies power amplifier tube V1 with plate voltage during transmission. The dc-to-dc converter uses the 12.5 -volt dc battery supply input. Module Al consists of a transistorized power oscillator, transformer, and rectifier circuit.
a. Transistors Q1 and Q2 are connected in a common collector power oscillator circuit which operates at $4,000 \mathrm{cps}$. The primary windings, terminals 4 and 6 , of transformer T1 provide the load for the transistors. Regenerative feedback to sus tain oscillation is applied to the base of each transistor from the winding, between terminals 5 and 7 , of transformer T1. The 12.5 -volt dc input to module AI is applied when the function switch is at ON and the handset push-to-talk switch is closed. As a result of circuit unbalance, a larger current flows through one of the transistors and its associated portion of the primary winding of transformer T1 when the supply voltage is initially applied to the oscillator.
(1) Assume that the larger current is flowing through transistor Q1. This

Figure 25. Voltage regulator module A16, schematic diagram.
condition induces a voltage in the feedback winding of transformer T1. The voltzage is applied to the bases of the transistors, causing Q1 to conduct even more, and driving Q2 further into cutoff. The flux in the core of transformer T1 changes at a nearly constant rate until the core is saturated. When saturation occurs, no voltage is developed in the feedback windings of transformer T1. The feedback voltage to transistor Q1 decreases rapidly and drives transistor Q1 into cutoff.
(2) When transistor Q1 cuts off, the flux in the core of transformer T1 decreases slightly to induce voltages of opposite polarity across its windings. This reversal of polarity drives transistor Q1 further into cutoff and causes transistor Q2 to conduct. The current through Q2 increases until the transformer core saturates, and the cycle then repeats. During each half cycle, the transformer flux changes from saturation in one direction to saturation in the other. Since transis-
tors Q1 and Q2 switch rapidly from cutoff to saturation, the current in transformer T1 is essentially a square wave.
b. Inductor L1 and capacitors C1 and C2 form a pi-type filter circuit which prevents voltage peaks developed in module Al from reaching the 12.5 -volt supply. A voltage divider, consisting of resistors RI and R2, establishes the fixed base bias for transistors Q1 and Q2.
c. The rectifier circuit consits of two full-wave rectifiers. The 125 -volt output is rectified by diodes CR1 and CR4 and filtered by capacitor C4. The -45-volt output is rectified by diodes CR2 and CR3, and filtered by inductor L2 and capacitor C3. Resistors R4 and R5 are isolating resistors which prevent circuit loading by test equipment probes placed at voltage test jacks J 2 and J 3. Resistor R3 is a bleeder for the +125 -volt output.

32. Test Points

The RT-505/PRC-25 has 28 test points located on 21 modules which enable a maintenance man to locate a faulty module rapidly. These test points are normally
used in conjunction with Test Set, Electronic Plug-in Circuit AN/GRM-55 to isoIate a faulty module at the organizational level. If usedproperly, however, the signal voltages at these test points will expedite maintenance effort at higher echelons. A listing of the modules which are equipped with test points and a description of the signal to be expected at the test point are given below.
a. Module A1. Module A1 has two test points: J 2 and J3. Test point J 2 permits the -45 -volt output of the converter to be checked. Test point J 3 permits the $+125-$ volt output of the converter to be checked.
b. Module A3. Module A3 has one test point: J2. Test point J 2 permits the rf signal input to A3 (from A2) to be checked. A typical rf signal level at this test point, with a 20 -millivolt, $65-\mathrm{mc}$ signal injected at the ANT connector, is 25 millivolts.
c. Module A4. Module A4 has one test point: J2. Test point J 2 permits the rf signal input to A4 (from A3 to be checked). A typical rf signal level at this test point, with a 20 -millivolt, $65-\mathrm{mc}$ signal injected at the ANT connector, is 80 millivolts.
d. Module A5. Module A5 has one test point: J2. Test point J 2 permits sampling the vfo input. A typical rf signal level at
this test point, with no signal being received, is 20 millivolts.
e Module A6. Module A6 has one test point: J2. Test point J 2 permits the rf signal input to A6 (from A7) to be checked. A typical rf signal level at this test point, with the RT-505/PRC-25 in transmit condition, is 3 volts.
f. Module A7. Module A7 has one test point: J 2. Test point J 2 permits the rf signal input to A7 (from A8) to be checked. A typical rf signal level at this test point, with the RT-505/PRC-25 in transmit condition, is 1.5 volts.
g. Module A8. Module A8 has one test point: J 2. Test point J 2 permits the rf input from the transmitter mixer (in A9) to be checked. A typical rf signal level at this test point, with the RT-505/PRC-25 in transmit condition, is 0.5 volt.
h. Module A9. Module A9 has two test points: J 3 and J4. Test point J 3 permits the input apc voltage (from A11) to be checked. A typical apc voltage level, with the vfo properly aligned, is +3.8 volts dc. Test point J 4 permits the output of vfo Q1 (in A9) to be checked. A typical rf signal level of the vfo is 0.3 volt.
i. Module A10. Module A10 has two test points: J 2 and J3. Test point J 2 permits

Figure 26. Dc-to-dc converter module A1, schematic diagram.
the output of oscillator Q1 (in A10) to be checked. A typical rf signal level at this test point is 0.2 volt. Test point J 3 permits the output of oscillator Q2 (in A10) to be checked. A typical rf signal level at this test point is 1.8 volts.
j. Module A11. Module All has one test point: J 2. Test point J 2 permits the output of the discriminator (in A11) to be checked. A typical discriminator output level, with the fss if. input disabled (by pressing S2 on the main frame), is a 1.5 -volt peak-topeak, 10-cps signal.
k. Module A12. Module A12 has one test point: J 2. Test point J 2 permits the fss if. output of A12 to be checked. A typical rf signal level at this test point is 80 millivolts.

1. Module A14. Module A14 has two test points: J 2 and J 3 . Test point J 2 permits sampling the vfo input (from A9). Atypical rf signal level at this test point is 0.2 volt. Test point J 3 permits sampling the spectrum generator input (from A15). A typical rf signal level at this test point is a 1.5 -volt peak-to-peak, I-mc pulse.
m. Module A16. Module A16 has two test points: J 2 and J 3 . Test point J 2 permits the unregulated voltage input (12 volts dc) from the battery to be checked. Test jack J 3 permits the regulated voltage output (10 volts dc) to be checked.
n. Module A17. Module A17 has one test point: J2. Test point J 2 permits the control voltage output of All to be checked. A typical control voltage level, with the reference frequency input from A10 disabled (by pressing S3 on the main frame), is +3.6 volts dc.
o. Module A18. Module A18 has one test point: J 2. Test point J 2 permits the fss if. output of A18 to be checked. A typical rf signal level at this test point is 0.3 volt.
p. Module 40. Module A20 has one test point: J 2. Test point J 2 permits the output of the sidestep oscillator to be checked. A typical rf signal level at this test point, with the RF-505/PRC-25 in transmit condition, is 0.7 volt.
q. Module A21. Module A21 has two test points: J3 and J4. Test point J3 permits the rf input to A31 (from the $11.5-\mathrm{mc}$ crystal filter] to be checked. A typical rf sig-
nal level at this test point, with a 20 -millivolt, $65-\mathrm{mc}$ signal injected at the ANT connector, is 40 millivolts. Test point J4 permits the amplified output of A21 to be checked. A typical signal level at this test point, with the same input as above, is 600 millivolts.
r. Module A22. Module A22 has one test point: J3. Test point J 3 permits the amplified output of the speech amplifier limiter to be checked. A typical audio signal level at this test point, with a4-millivolt input to A22 (RT-505/PRC-25 in transmit condition), is 1.8 volts.
s. Module 43. Module A23 has one test point: J 3. Test point J 3 permits the 150cps output of the tone generator to be checked. A typical audio signal level at this test point, with the RT-505/PRC-25 in transmit condition, is 0.9 volt.
t. Module A24. Module A24 has one test point: J3. Test point J 3 permits the $150-$ cycle squelch tone signal, amplified in the frequency-selective circuits of the tone squelch, to be checked. A typical audio signal level at this test point, with an rf signal having a $150-\mathrm{cps}$ modulation detected by the receiver, or with the RT-505/PRC-25 in transmit condition, is 1 volt.
u. Module A25. Module A25 has two test points: J3 and J4. Test point J 3 permits the amplitude of the demodulated signal to be checked. A typical audio signal level at this test point, with a 20 -millivolt, 65mc signal injected at the ANT connector, is 180 millivolts. Test point J 4 permits the amplified audio output of A25 to be checked. A typical audio signal level at this test point, with the above signal injected at the ANT connector and with the VOLUME control fully clockwise, is 4.5 volts .

33. Power Distribution

a. General. The primary power source for Radio Set AN/PRC-25 can be either a Battery, Dry BA-386/PRC-25 or an Amplifier-Power Supply Group 0A-3633/ GRC is used when the AN/PRC-25 is operated in a vehide. The power distribution described in b and c below is for use with
the OA-3633/GRC. The power distribution when a BA-386/PRC-25 is used is similar except that a shorting cap is installed on J 3 and the BA-386/PRC-25 is connected to $j 4$ (fig. 88).
b. Receive (fig. 86). When function switch Sl is at ON , and the handset push-to-talk button is not depressed, the RT -505/PRC-25 will receive. The input voltage from the primary power source is applied through connector J 3 .
(1) The input voltage from connector J 3 E (+12.5 volts) is connected to contact 2 of S1 (rear). The +12.5 volts is applied through contacts of switch S1 (rear) and connector A16J 1C to the input of module A16. Regulated +10 volts from module A16 is applied through connector A16J IF and the individual module connectors to modules A14 and A15 through A16J 1A to modules A9, A10, A11, A17, A18, and A25. Test switches S2 and S3 are in series with the voltages supplied to module AIO. Regulated +10 volts is supplied from module A18 through contacts C of J 14 and D of J 18 to module A12. Regulated +10 volts is also applied from J 11A through filter L2 (in A30), contacts 4 and 6 of transmit-receive relay K1, and choke L4 to module A5; from contact 6 of K 1 to module A21, and from contact 6 of K1 through choke L3 to module A3. Relay K1 opens these circuits during transmission. When function switch S1 is at SQUELCH, regulated +10 volts is applied from J 11A through contacts 4 and 3 of S1 (front) to module A24. This circuit is opened when switch S1 is at positions other than SQUELCH.
(2) When at SQUELCH, a ground is connected through contacts 8 and 10 of switch S1 (front) and through contacts 8 and 2 of deenergized relay K3 to terminal 9 of mother board A27. This condition grounds the output of module A25, which prevents audio signals from being applied to the handset. When K3 is
energized, the ground is removed from contact 2 of K3 and applied to contact 3 of K 3 to allow the audio output of module A25 to be applied to the handset. Relay K3 is energized by the squelch relay driver stage (Q5) in module A24.
c. Transmit (fig. 87). When function switch S 1 is at ON and the handset push-to-talk switch is pressed, the transmitter circuits are activated. When the push-totalk button is pressed, the control circuits of relays K1 and K2 are completed.
(1) The input voltage from connector J3E (+12.5 volts) is applied, through contacts 8 and 3 of relay K2, to dc-to-dc converter module Al. Module Al has two dc output voltages, +125 and -45 , which are used only for transmission. The +125 -volt output (from A1] 1B) is applied to the plate circuit of the transmitter power amplifier through terminal 2 of assembly A29. The -45 -volt bias (from A1) 1F) is applied directly to the control grid circuit of assembly A29 and to module A6; it is also applied to module A7 through choke L1.
(2) Filament voltage for transmitter power amplifier V1 is applied from the input connector J 3 H through contacts 4 and 7 of relay K2 toterminal 4 of assembly A29.
(3) The input voltage to A16 is applied from connector J 3-E through function switch S1 to input connector A16J 1-C. The regulated +10 -volt output of A16 is coupled from J 11A through inductor L2 (in A30) to contact 4 of relay K1. With relay K1 energized (on transmit), the regulated +10 volts is transferred to contact 7 of K1 and is applied through inductor L4 to modules A8, A10, A20, A22, and A23. The regulated +10 volts ts is applied from module A16 through J 11A direct to modules A9, A10, A17, and A18 and from J 11F to modules A14 and A15 when both on transmission and reception.

THIRD ECHELON MAINTENANCE

Section I. GENERAL TROUBLESHOOTING TECHNIQUES

Warning: Be extremely careful when servicing the RT-505/PRC-25. During operation, 125 volts dc exists at the plate circuit of the power amplifier.

34. Scope of Third Echelon Maintenance

Third echelon maintenance procedures (para 35 through 45) supplement the maintenance procedures described in TM 11-5820-398-10 and TM 11-5820-398-20. Third echelon maintenance includes systematic troubleshooting procedures (para 35 through 39), repair procedures (para 40 through 42), and instructions for aligning power amplifier tank module A2, variable frequency oscillator module A9, and sidestep oscillator module A20 (para 43 through 45).
35.Organization of Third Echelon Troubleshooting Procedures
a. General. The first step in troubleshooting a defective RT-505/PRC-25 is to sectional ize the fault to a major area such as the power supply, function switch circuits, or case wiring. The second step is to localize the fault to a defective assembly or area. The third step is to isolate the faulty part or circuit board within an assembly.
b. Sectionalization. The following group of tests is arranged to reduce unnecessary work and to aid in troubleshooting a defective RT-505/PRC-25. Sectionalize the trouble to faulty units by following the procedures listed in (1) and (2) below:
(1) Visual inspection. Visual inspection may locate faults without testing or measuring the circuits.
(2) Operational tests. Operational tests frequently indicate the general location of a trouble. In many instances, operational tests, such as the equipment performance checklist (TM 11-5820-398-20), will help in determining the exact nature of the fault.
c. Localization and Isolation. The procedures given in (1) through (3) below will aid in localizing and isolating the trouble. Localize the trouble to an area, and then isolate the trouble to a defective part. Use the following methods:
(1) Troubleshooting chart. The trouble symptoms listed in the troubleshooting chart (para 38) will aid in localizing and isolating trouble to a part or to an assembly.
(2) Voltage and resistance measurements. Most troubles must be located by voltage and resistance measurements. The RT-505/PRC25 is transistorized. Observe the following precautions to prevent transistor damage. Make voltage and resistance measurements only as specified. When measuring voltages, use tape or sleeving to insulate the entire test probe, except the extreme tip. A momentary short circuit can ruin a transistor. (For example, if the bias is shorted out, excessive current between the emitter and the base may ruin the transistor.)
(3) Intermittent troubles. The possibility of intermittent troubles should not be overlooked. If present, this type of trouble may often be made to appear by tapping or jarring the RT-505/PRC-25. Check the wiring, the connections, and the plugs and jacks of the various modules.
36. Test Equipment and Additional Equipment Required

The following charts list the equipment required for troubleshooting the RT-505/

PRC-25. The charts also list the associated technical manuals for the equipment. a. Test Equipment.

Test equipment	Technical manual
Multimeter ME-26 B/U --- RF Wattmeter AN/URM$43 A^{a}$. Signal Generator AN/ URM-48 ${ }^{\text {a }}$. Frequency Meter AN/ USM-26. RF Millivoltmeter 411A	TM 11-6625-200-12 TM 11-5133 TM 11-1257 TM 11-5057
${ }^{\text {a }}$ If s pecific models are not available, other models of the same nomenclature having similar characteris tics may be used.	
	Technical manual
Antenna AT-892 /PRC-25 -Handset H-138/U	TM 11-5820-398-10 TM 11-5820-398-10

Equipment	Technical manual
Battery, Dry BA-386/ PRC-25.	TM 11-5820-398-10
Module extender ${ }^{\text {a }}$---------	(fig. 27)
Alignment ule A20 ${ }^{\text {a }}$. cover for mod-	(fig. 28)
Dummy antenna, cons isting of $:^{a}$	(fig. 41)
Connector, UG-447/U (two required). Resistor, fixed, 510 ohms, 1 watt.	
Resistor, fixed, 56 ohms, 1 watt (two required).	
Wire, stranded, AWG No. 18.	
Aluminum can 6 in. x 2.5 in. $\times 2.5$ in.	
Cord CG-530/U, p/o Frequency Meter AN/USM26.	TM 11-5057

NOTES:
I. USE CONNECTOR SIMILAR TO THAT ON MODULE AZO
2. USE CONNECTOR SIMILAR TO JIG IN RECEIVER-TRANSMITTER RT-505/PRC-25
3. FOR INTERCONNECTIONS, USE NO. IE AWG STRANDED WIRE
4. MOUNT CONNECTORS ON INSULATING BOARD

TM5820-398-35-50

Figure 27. Typical module extender for module A20.

Figure 28. Typical alignment cover for module A20.

Section II. THIRD ECHELON TROUBLESHOOTING

Caution: Do not attempt removal or replacement of parts before reading the instructions in paragraph 40.

37. Test Setup

a. Preparatory Steps. Prepare the RT-505/PRC-25 for bench testing as follows:
(1) Remove Battery Box CY-2562/ PRC-25 and Battery, Dry BA-386/ PRC-25 (TM 11-5820-398-10 para 28).
(2) Remove the receiver-transmitter case (TM 11-5820-398-20 (para 8)).
(3) Be sure the POWER receptacle cover is on the POWER receptacle. The POWER receptade cover contains jumpers necessary for battery operation.
(4) Connect the BA-386/PRC-25 to the battery plug on the RT-505/PRC25.
b. Test Equipment.
(1) Receiver section.
(a) Use the AN/URM-48 to provide a test signal. Set the controls on the AN/URM-48 as follows:

Consral.	Position. or indication
BAND SWITCH ${ }^{\text {a }}$----	C or D
RF TUNING control'---*	45.00 or 64.00
DEVIATION RANGE switch.	25
OPERATION switch ----*	1000~
DEVIATION LEVEL	Adjust for 10 kc on KILOCYCLES DEVIATION meter.
RF SET TO LINE control.	Adjust for MICROVOLTS meter indication at RF SET TO LINE.
RF ATTENUATOR MICROVOLTS control.	Adjust for 0.70 microvolt on right-hand meter,

(b) Connect the AN/URM-48 RF cable to one end of the dummy antenna.
(c) Connect the other end of the dummy antenna to the receivertransmitter ANT connector; use cord CG-530/U.
(d) Connect Handset H-138/U to one of the receiver-transmitter AUDIO connectors.
(e) Set the receiver-transmitter controls as follows:

Control	Position or indication
Function switch --------------	OFF
BAND switch ----------------	30-53
Tuning controls ---------------	45.00
VOLUME control -------------	5

(f) Use Multimeter ME-26 B/U to make the voltage and resistance checks directed in the troubleshooting chart (para 38).
(2) Transmitter section.
(a) Use RF Wattmeter AN/URM-43A to provide antenna loading for the transmitter. Set the 15W-60W switch on the AN/URM-43A at 15W.
(b) Connect the AN/URM-43A to the receiver-transmitter ANT connector.
(c) Connect Handset $\mathrm{H}-138 / \mathrm{U}$ to one of the receiver-transmitter AUDIO connectors.
(d) Set the receiver-transmitter controls as follows:

Control	Position or indication
Function switch	OFF
BAND switch ---------------	30-53
Tuning controls -------------	45.00
VOLUME control -------------	5

38. Localizing and Isolating Troubles
a. Test Conditions. Perform all checks outlined in the troubleshooting chart with the equipment under test connected to the BA-386/PRC-25 and to the additional equipment as specified in paragraph 37. Disconnect the BA-386/PRC-25 when making resistance checks.
b. Test Procedure Turn the test equipment on and allow for a 5 -minute warmup. Set the function switch of the RT-505/PRC25 at ON.
Note For removal and replacement of modules, refer to TM 11-5820-398-20, paragraph 10
c. Troubleshooting Charts.
(1) Troubleshooting chart for receiver section of R T-505/ PRC-25.

Item	Indication	Probable trouble	Procedure
1	2EC-TRANS FREQUENCY channel dial lamp does not light when the function switch is at LITE.	a. Connector J3 or J4 defective -- b. Switch S2 defective ----------	. Check J3 and J4 (fig, 31 and 32) for bent, broken, or missing pins. b. Check wiring between switch S1, terminal 7, and XDS1 (fig. 29' and 88). Check wiring between terminals 6 and 5 of S1. Check continuity from S1, terminal 8 , to ground (fig. 88).
2	No 1, 000-cps output signal from the AN/URM-48 is heard in the H-138/U when the function switcl is at ON.	a. Open circuit between A16 and A27.	z. Check physical condition of J 11 . Check printed wiring of A27 (fig. 34 and 88) by visual inspection and continuity measurements. Check continuity between pin A of J11 and pin 11 of A27, and between pin D of J 11 and pin 4 of A27 (fig. 88).
		b. Open circuit between A16 and J4.	b. Check continuity between pin \mathbf{C} of J 11 and pin B of J 4 (fig. 88).
		c. Open circuit between A25J2 and A27.	2. Check continuity between pins 1 , 2, and 3 of A25J2 and pins 11, 10 , and 9 , respectively, of A27 terminal strip (fig. 81).
		d. Open circuit between A27 and FL1 or FL2.	x. Check continuity between pins 9 and 10 of A27 terminal strip, and pins B and A, respectively, of FL1 and FL2 (fig. 88).

Item	Indication	Probable trouble	Procedure
3	Received signals are not heard, but a rushing noise is heard in the $\mathrm{H}-138 / \mathrm{U}$ when the function switch is at ON and the long antenna is installed at ANT connector J1. Received signals are normal with the short antenna installed.	e. Defective relay K3 or relay socket XK3.	3. Check continuity between terminals 2 and 8 of relay K3 (normal indication is 0 ohm). Check continuity between terminals 3 and 8 of relay K3 (normal indication is infinity). Check physical condition of XK3 (fig. 33 and 88).
		f. Defective wiring between XK3 and A27.	f. Check continuity between pin 2 of XK3 and pin 9 of A27 terminal strip (fig. 32 and 88).
		g. Defective capacitor A27C10 or A27C11.	?. Check resistance of A27C10 and A27C11 (fig. 88). (Should indicate several megohms.)
		a. Defective A28S2 or A28S3 ----	t. Check physical condition of A28S2 and A28S3. Check continuity through A28 S2 and A28S3, with long antenna installed (fig, 16 and 31).
		b. Defective A28S1 or A28L4 ---	1. Change bands and retest. If signal is received on the high band but not on the low, turn S1 to the low-band position and check continuity between pins 1 and 2 of A28 (fig. 34 and 88). If resistance is infinity, check continuity of A28L4 and between pins 8 and 9 of A28S1. Check continuity between J1 and pin 1 of A2 (fig. 88). If resistance is high, check continuity between terminals 5 and 6 of A28S1. Check C2A, on main frame (fig. 34 and 88). \therefore If signal is received on a low band but not on the high, turn S1 to high-band position and check continuity between A28S1, terminal 10 and A28, terminal 1. Check A28L1 and A28C2 (fig. 16).
		c. Defective A28S1, A28L1, or A28C2.	
4	Received signals are not heard, but a rushing noise is heard in the $\mathrm{H}-138 / \mathrm{U}$ when the function switch is at ON and the short antenna is installed at ANT connector J1. Received signals are normal with the long an-	a. Defective A28S1 or A28L3 ---	x. Change bands and retest. If signal is received on high band but not on low, turn S1 to the low-band position and check continuity between J 1 and A28S1, terminal 11. Check A28L3 and A28C3 (fig. 16).
	tenna installed.	b. Defective A28S1 or A28L2 --- c. Defective A28C1 -----------	b. If signal is received on the low band but not on the high, turn S1 to the high-band position and check continuity between J 1 and A28S1, terminal 1 fig. 88). Check A28L2 (fig. 16). 2. If signal is not received on either band (with short antenna) but is normal with long antenna, check A28C1 (fig. 16).
5	When signals from the AN/URM48 are applied, one band operates properly but on the other band, a rushing noise is heard in the $\mathrm{H}-138 / \mathrm{U}$ when the function switch is at ON .	Defective BAND switch shaft ----	Higher echelon maintenance required.
6	When signals from the AN/URM48 are applied, a rushing noise is heard in the $\mathrm{H}-138 / \mathrm{U}$ on	a. Defective relay K1 ----------	2. Check continuity between terminals 4 and 6 of Kl (normal indication is $\mathbf{0}$ ohm). Check

(2) Troubleshooting chart for transmitter section of RT-505/ PRC-25.

Item	Indication	Probable trouble	Procedure
1	Low rf power output indicated on the AN/URM-43A.	a. Low dc voltage applizd to A29V1 b. Improper antenna loading c. Improper alignment of C1	a. Check dc voltage input to A29 (para 39). b. Perform the procedures in item 3 or 4 of (1) above, as applicable. c. Higher echelon maintenance required.
2	No rf power output indicated on the AN/URM-43A on one band. Recelver also defective on the same band.	Defective BAND switch shaft -----	Higher echelon maintenance required.

Item	Indication	Probable trouble	Procedure
3	o rf power output indicated on the AN/URM-43A on one band. Receiver operation is normal on both bands.	2. Defective C 1 \qquad ל. Defective S4, or wiring from S4 to A26 assembly. 2. Defective wiring between A19 and A20.	a. Higher echelon maintenance required. b. Check S4 and continuity of wiring between S4 and A26. Check printed wiring of A26 (fig. 34 and 88). c. Check continuity between pin D of J15 and pin B of J16 (for low band), and between pin F of J15 and pin B of J16 (for high band). Check physical condition of J15 and J16 (fig. 31 and 88).
4	orf power output indicated on the AN/URM-43A on either band. Receive operation is normal.	2. Defective FL1 or FL2 -------	a. Connect the handset to AUDIO connector FL1, press the H-138/U push-to-talk switch. Repeat the procedure with the H-138/U connected to FL2. If the transmitter operates properly from one AUDIO connector, but not the other, replace the defective connector (para 47).
		3. Defective A30L2	b. Check continuity between pins 2 and 7 of A30. Replace A30L2 if indication is infinity (fig. 88).
			c. Key the transmitter and check the voltage between contacts 4 and 7 of K1. Zero volt should be obtained, indicating closed (energized) contacts.
		1. Defective indicator A30L4 ----	d. Check continuity between pins 4 and 9 of A30. Replace A30L4 if indication is infinity (fig. 88).
		3. Defective capacitor A30C 1 ----	
		f. Defective relay K2	f. With handset keyed, check voltage across contacts 8 and 3 and across contacts 4 and 7 of K2. In each case, 0 volt should be measured, indicating closed (energized) relay contacts.
		5. Defective $+12.5-$ volt distribution wiring.	g. Check continuity between contact 3 of K2 and pin C (fig. 34 and 88) of J10. Check physical condition of J10(fig. 31 and 88).
		2. Defective +2. 5-volt distribution wiring. i. Defective -45-volt distribution wiring.	h. Check continuity between contact 7 of K2 and pin 4 (fig. 34) of A29 (fig. 88).
		i. Defective -45-volt distribution wiring.	i. Check continuity between pin F of J10 and the following points: (1) Pin 7 of A29. (2) Pin 15 of J6. (3) Pin 8 of J5. Replace LI if the measurements between pin F of J 10 and pin 8 of J5 indicate infinity. Check physical condition of J 5 and J6 (fig. 31 and 88).
		j. Defective +125 -volt distribution wiring.	j. Check continuity between pin B of J 10 (fig. 31) and pin 2 of A29 (fig. 8\%).
		k. Defective +10 -volt regulated distribution wiring.	k. Check continuity between pin 9 of A30 and pins 5 and 6 of J5, and pin C of J16. Replace L2 if measurement between pin 9 of A30 and pin 6 of J5 in-

Item	Indication	Probable trouble	Procedure
13	is at SQUELCH. Receiver operation is normal. Transmits a modulated carrier that cannot be received when an RT-505/PRC-25 at the receiving site is in the SQUELCH mode of operation. Sidetone is heard in H-138/U.	Defective wiring between A23 and A22.	Check continuity between pin 1 A23J2 and pin 4 of A22J2 fig. 33 and 88).
14	Same as step 13 except no sidetone is heard in $\mathrm{H}-138 / \mathrm{U}$.	Defective +10 -volt regulated wiring to A23.	Check continuity between pin 9 of A30 and pin 2 of A23J2 fig. 33 and 88).
15	BAND switch does not function properly.	BAND switch defective	Higher echelon maintenance required.
16	Tuning knobs do not function properly.	Selector mechanism defective --	Higher echelon maintenance required.

39. Isolating Trouble in Transmitter Power Amplifier Circuit (fig. 14 and 29)
a. Preparation.
(1) Prepare the following equipment:
(a) Multimeter ME-26B/U.
(b) Rf Wattmeter AN/URM-43A.
(c) Handset H -138/U.
(2) Set the front panel controls of the receiver-transmitter as follows:
(a) BAND switch at 30-52.
(b) Tuning controls for 30.00 mc .
(c) Function switch at ON.
(3) Connect the AN/URM-43A to ANT connector J 2.
(4) Connect the $\mathrm{H}-138 / \mathrm{U}$ to an AUDIO connector.
b. Output Power Test.
(1) Press the H-138/U push-to-talk switch. The AN/URM-43A should indicate 2 watts.
(2) Release the $\mathrm{H}-138 / \mathrm{U}$ push-to-talk switch.
(3) Set the receiver-transmitter tuning controls for 52.95 mc .
(4) Repeat (1) and (2) above.
(5) Set the front panel controls of the receiver-transmitter as follows:
(a) BAND switch at 53-75.
(b) Tuning controls for 53.00 mc .
(6) "Press the H-138/U push-to-talk switch. The AN/URM-43A should indicate 1.5 watts.
(7) Release the $\mathrm{H}-138 / \mathrm{U}$ push-to-talk switch.
(8) Set the receiver-transmitter tuning controls for 75.95 mc .
(9) Repeat (6) and (7) above.
(10) If the output does not meet the standards outlined in (1) and (6) above, proceed to c below.
c. Faulty Parts Is elation.
(1) Connect the AN/URM-43A to ANT connector J 2. Connect the H-138/U to an AUDIO connector.
(2) Set the BAND switch at 30-52 and set the tuning controls for 30.00 mc .
(3) Press the H-138/U push-to-talk switch and measure the voltages at the points listed in the chart below. Compare them with the normal signal and dc voltages listed. Note: Measure all voltages to ground.
(a) Signal voltage chart.

Point of measurement	Voltage (rms)
A 29-5	16
A 29 V 1-8	16
A29V1-3	68

(b) Dc voltage chart.

Point of measurement	Voltage (de)
A29-2	+125
A 29-7	-45
A 29-4	+2.5
A29V1-5	+2. 5
A29V1-7	+2. 5
A 29V1-3	+118
A 29-5	-10.2
A29V1-8 --	-10.2

(4) After the replacement of a faulty part, perform the procedures given in a and b above.

TM5820-398-35-77
Figure 29. Transmitter power amplifier test points and parts location.

Section III. THIRD ECHELON REPAIRS

40. Scope of Third Echelon Repairs
a. The third echelon repairman may remove and replace audio and control chassis A27, the synthesizer mother board A26,
and all other components within the RT-505/PRC-25.
b. Paragraphs 41 and 42 contain instructions for removing and replacing parts of the RT-505/PRC-25.
41. Removal and Replacement of Audio and Control Chassis A27 (fig. 32)
a. Removal.
(1) Remove modules A21 through A25 as described in TM 11-5820-39820, baragraph 10a.
(2) Remove relay K3.
(3) Unsolder and remove $11.5-\mathrm{mc}$ filter FL3.
(4) Unsolder and remove receiver discriminator $\mathrm{Z1}$.
(5) Tag and unsolder all wiring to relay socket XK3 and audio and control chassis A27 terminal strip.
(6) Rem $o v$ e the wiring through the grommet at the lower left corner of the audio and control chassis.
(7) Using a hacksaw, cut off one end of the metal dowel protruding from the audio and control chassis A27 hinge.
(8) Grasp the other end of the metal dowel with pliers and remove the metal dowel from the hinge.
(9) Release the three audio and control chassis captive screws and separate audio and control chassis A27 from the RT-505/PRC-25.
b. Repl acement.
(1) Align the hinge on audio and control chassis A27 with the hinge on RT-505/PRC-25.
(2) Insert a new metal dowel and push downward until the dowel extends through the entire hinge.
(3) Crimp the metal dowel at both ends.
(4) Insert the wiring through the grommet at the lower left corner of the audio and control chassis A27 (fig. 33) and solder all the electrical leads to XK3 and to the audio and
control chassis A27 terminal strip.
(5) Replace $11.5-\mathrm{mc}$ filter FL3 and solder the connections.
(6) Replace receiver discriminator Z1 and solder the connections.
(7) Replace relay K3 into socket XK3.
(8) Replace modules A21 through A25 as described in TM 11-5820-39820, paragraph 10b.
(9) Secure audio and control chassis A27 with the three audio and control chassis captive screws.
42. Removal and Replacement of Synthesizer Mother Board A26
(fig. 34)
a. Removal.
(1) Remove modules A10 through A20 as described in TM 11-5820-39820, paragraph 10c.
(2) Remove the 10 module nuts and bushings.
(3) Loosen the four mother board captive fasteners.
(4) Gently pull the mother board away from the chassis.
(5) Tag and unsolder all wiring to the mother board.
b. Replacement.
(1) Solder all electrical leads to the mother board.
(2) Align the four mother board captive fasteners with the holes in the chassis.
(3) Secure the mother board captive fasteners.
(4) Replace and tighten the 10 module nuts and bushings.
(5) Replace modules AIO through A20 as described in TM 11-5820-39820, baragraph 10d.

TM5820-398-35-28

Figure 30. Receiver-Transmitter, Radio RT-505/PRC-25, bottom view.

Figure 31. Receiver-Transmitter, Radio RT-505/PRC-25, bottom view, modules removed.

TM5820-398-35-30

Figure 32. Receiver-Transmitter, Radio RT-505/PRC-25, top view.

Figure 33. Receiver-Transmitter, Radio RT-505/PRC-25, top view, modules removed.

Figure 34. Receiver-Transmitter, Radio RT-505/PRC-25, top view, audio and control chassis A27 open.

Section IV. THIRD ECHELON AUGNMENT

Note: Third echelon alignment consists of aligning transmitter power amplifierTank module A2, variable frequency oscillator module A9, and sidestep oscillator module A20.
43. Alignment of Power Amplifier Tank Module A2 (fig. 30 and 31)
a. Set the rf output of the AN/URM-48 for 30.00 mc , modulated $\pm 10 \mathrm{kc}$ by a 1,000-cycle-per-second (cps) tone.
b. Connect the RF output lead of the AN/ URM-48 to receiver-transmitter ANT jack J2.
c. Set the BAND switch of the receivertransmitter at 30-52, and the tuning controls for 30.00 mc .
d. Adjust the ME-26B/U to measure ac voltage and connect it across pins A and B
of one of the receiver-transmitter AUDIO connectors.
e. Adjust A2T1 for a maximum indication on the ME-26B/U.
f. Set the rf output of the AN/URM-48 for 52.95 mc , modulated $\pm 10 \mathrm{kc}$ by a $1,000-$ cps tone.
g. Set the receiver-transmitter tuning controls for 52.95 mc .
h. Adjust A 2 C 1 for a maximum indication on the ME-26B/U.
i. Repeat c through h above until no further increase in the ME-26B/U meter indication can be obtained.
j. Set the rf output of the AN/URM-48 for 53.00 mc , modulated $\pm 10 \mathrm{kc}$ by a $1,000-$ cps tone.
k. Set the BAND switch of the receivertransmitter at 53-75, and the tuning controls for 53.00 mc .

1. Adjust A2T2 for a maximum indication on the ME-26B/U.
m . Set the rf output of the AN/URM-48 for 75.95 mc , modulated $\pm 10 \mathrm{kc}$ by a $1,000-$ cps tone.
n . Set the receiver-transmitter tuning controls for 75.95 mc .
o. Adjust A2C2 for a maximum indication on the ME-26B/U.
p. Repeat k through o above until no further increase in the ME-26 B/U meter indication can be obtained.

44. Alignment of Variable Frequency
 Oscillator Module A9
 (fig. 30 and 31)

a. Connect the AN/USM-26 between A14J 2 and ground.
b. Set the receiver-transmitter BAND switch to 30-52, and the tuning controls to 30.00 mc .
c. Press and hold S2 and S3.
d. Adjust A9T1 until the AN/USM-26 indicates a frequency of 41.500 mc .
e. Release S2 and S3.
f. Set the receiver-transmitter tuning controls to 52.95 mc .
g. Press and hold S2 and S3.
h. Adjust A9C9 until the AN/USM26 indicates a frequency of 64.450 mc.
i. Release S2 and S3.
j. Repeat b through i above sever a 1 times to insure proper alignment of A9.
45. Alignment of Sidestep Oscillator

Module A20
(fig. 30 and 31)
a. Remove module A20 (TM 11-5820-398-20, bara 10c).
b. Insert the module extender (fiq. 27) into J 16.
c. Remove the cover from module A20 and place the module cover (fig. 28) on the module.
d. Connect module A20 to the module extender (fig. 27).
e. Set the receiver-transmitter BAND switch at 30-52.
f. Connect the AN/USM-26 between A20) 2 (top of module A20) and ground (fig. 30).
g. Connect the AN/URM-43A to re-ceiver-transmitter ANT connector J 2.
h. Connect an RF millivoltmeter 411A between A20J 2 and ground (fig. 30).
i. Connect the $\mathrm{H}-138 / \mathrm{U}$ to a receivertransmitter AUDIO connector.
j. Press the H-138/U push-to-talk switch and adjust A20T1 for an indication of $11.451 \mathrm{mc} \pm 500 \mathrm{cps}$ on the AN/USM-26.
k. Adjust A20T2 for a maximum indication on the 411A.
I. Remove module A20 and the module extender from J 16.
m . Remove the module alignment cover from module A20.
n . Replace the cover on module A20.
o. Replace module A20 (TM 11-5820-

398-20, para 10d).

Section I. FOURTH ECHELON REPAIRS

46. Scope of Fourth Echelon Repairs

Fourth echelon maintenance includes those functions allocated to third echelon maintenance (ch 3). In addition, it also includes removal and replacement of the front panel and the selector mechanism housing assembly, and alignment of tuning capacitors C1 and C2.
47. Removal and Replacement of Front Panel
a. Removal.
(1) Remove modules A2, A6, A 10, and A16.
(2) Remove the Allen head screw that secures the module band positioning arm to the yoke assembly (fig. 35).
(3) Remove the Iamp receptacle screw and its lockwasher and flatwasher (fig. 35). Remove the lamp receptade and the lamp.
(4) Loosen the three audio and control chassis captive screws that secure the audio and control chassis, and swing the chassis away (fig. 36).
(5) Unsolder and tag the wire connected to the contact on left side of tuning capacitor C2 (fig. 39).
(6) Unsolder and tag the shield and center conductor of the coaxial cable connected to ANT connector (fig. 3p).
(7) Remove the two damps that secure the electrical leads to the selector mechanism housing assembly (fig. 36).
(8) Remove the two screws that secure the relay socket to the spacer legs and remove the assembly (fig. 39).
(9) Remove the four screws that secure the two tuning capacitors C1 and C2 to the selector mechanism housing assembly.
(10) Loosen the clamps around the
shafts of tuning capacitors C1 and C2.
(11) Remove the two screws that secure the selector mechanism housing assembly to the chassis.
(12) Remove the six screws that se cure the front panel to the chassis (fig. 3il).
(13) Remove the nuts (fig. 37) on the front panel that secure the AUDIO connectors in place.
(14) Remove the POWER connector nut (fig. 37).
(15) Remove the VOLUME control retaining screw and the VOLUME control knob (fig. 37). A retaining nut, and a lockwasher are under the knob; remove them.
(16) Remove the function switch retaining screw and the function switch knob. A retaining nut is under the knob; remove it.
(17) Gently pull the front panel away from the chassis.
Note It may be necessary to loosen or remove the three screws that secure the antenna loading network [(fig. 39) to the front panel so that the POWER connector can be worked loose.
b. Replacement.
(1) Secure the POWER and AUDIO connectors in their respective openings on the front panel with the retaining nut.
Note: If necessary, tighten the three screws that secure the antenna loading network to the $f r o n t$ panel after the POWER connector has been replaced.
(2) Replace the function switch shaft nut and knob.
(3) Replace the star washer, retaining nut, knob, the VOLUME control, the lockwasher, nut, and knob.
(4) Replace the six screws that secure the chassis to the front panel.
(5) Replace the two screws that
secure the selector mechanism housing assembly to the chassis.
(6) Replace tuning capacitors C 1 and C2 and secure them with four screws.
Note: Do not tighten the clamp on the shaft of tuning capacitors C1 and C2 at this time.
(7) Replace the relay socket assembly on the spacer legs and secure it with screws.
(8) Replace the clamps that secure the electrical leads to the selector mechanism housing assembly.
(9) Solder the shield and center conductor to ANT connector J 2.
(10) Solder the wire removed in a(5)
above to the contact on the left side of tuning capacitor C2.
(11) Replace the Iamp in the Iamp receptacle and s e cure it to the selector mechanism housing assembly with the flat washer, lockwasher, and screw.
(12) Place the module band positioning arm into the yoke assembly and secure with the Allen head screw.
(13) Replace modules A2, A6, A10, and A16 (TM 11-5820-398-20, para 10).
(14) Align tuning capacitors C1 and C2 (para 50 and 51).
(15) Close the audio and control chassis

TM5820-398-35-33

Figure 35. Receiver-Transmitter, Radio RT-505/PRC-25, bottomview, disassembly.

Figure 36. Receiver-Transmitter, Radio RT-505/PRC-25, top view, audio and controlchassis open.

Figure 37. Receiver-Transmitter, Radio RT-505/PRC-25, front panel, tuning knobs removed.
and secure it with the three audio and control chassis captive screws.
48. Removal and Replacement of Selector

Mechanism
(fig. 37, 38, and 40)
a. Removal.
(1) Remove the front panel (para 47).
(2) Remove the receiver-transmitter tuning knobs as follows (fig. 40):
Note: Removal of the mc and the kc tuning knob assemblies from their respective shafts is identical. Removal of the kc stop assembly can be accomplished without disassembling the kc tuning knob assembly. Removal of the mc stop assembly and plate mounting, however, requires the disassembly and removal of the entire mc tuning knob assembly.
(a) Remove the roll pin that retains the wingnut on the selector mechanism shaft.
(b) Remove the wingnut, lockwasher, flat washer, and upper knob.
(c) Remove the tru-arc retaining ring from the sleeve assembly and remove the retaining washer and spring.
(d) Remove the lower knob.
(e) Remove the spring pin that secures the sleeve assembly to the selector mechanism shaft.
(f) Remove the sleeve assembly.
(g) Remove the stop assembly and plate mounting (PRESET mechanical lever) on the mc tuning knob shaft by removing the four fillister head. screws around the shaft.
(h) Remove the stop assembly (PRESET mechanical lever) on the kc tuning knob shaft by removing the two screws and two washers that secure it to the front panel.
(3) Remove the BAND switch retaining screw that secures the BAND switch knob (fig. 37) to the shaft and remove the BAND switch knob.
(4) Remove the dust seal from the se-
lector mechanism housing assembly (fig. 38).
(5) Remove the five selector mechanism securing screws that secure the selector mechanism housing assembly to the front panel.
(6) Separate the selector mechanism housing assembly from the front panel by tapping the receivertransmitter tuning knobs gently.
b. Repl acement.
(1) Reassemble the selector mechanism housing assembly and front panel.
(2) Replace the five selector mechanism securing screws that secure the selector mechanism housing assembly to the front panel.
(3) Replace the dust seal.
(4) Replace the BAND switch knob to the shaft and secure the knob with the BAND switch retaining screw.
(5) Replace the receiver-transmitter tuning knobs as follows:
(a) Replace, the stop assembly (PRESET mechanical lever) on the kc tuning knob shaft and secure it to the front panel with two screws and two washers.
(b) Replace the stop assembly and plate mounting (PRESET mechanical lever) on the mc tuning knob shaft and secure with the four fillister head screws around the shaft.
(c) Replace the sleeve assembly.
(d) Replace the spring pin that secures the sleeve assembly to the shaft.
(e) Replace the lower knob.
(f) Replace the spring, retaining washer, and tru-arc retaining ring.
(g) Replace the upper knob.
(h) Replace the flat washer, lockwasher, and wingnut.
(i) Replace the roll pin that retains wingnut on shaft.
(6) Replace front panel (para 47b).

TM5820-398-35-36
Figure 38. Front panel, rear view.

Figure 39. Tuning capacitor assembly.

Figure 40. Tuning knob assembly.

Section II. FOURTH ECHELON ALGNMENT

49. General

a. Scope of Fourth Eohelon Alignment Procedures. Fourth echelon alignment consists of aligning tuning capacitors C1 and C2. These capacitors must be aligned whenever the front panel is replaced, or whenever tuning capacitor C1 or C2 is replaced.
b. Equipment Required. A Ballantine Direct Capacity Meter Model 520 or equivalent is required.
50. Tuning Capacitor C1 Alignment (fig. 39)

Align tuning capacitor C1 as outlined in a through h below. Do not change the con-
trol settings unless specifically directed.
a. Remove module A8 from the chassis.
b. Adjust the RT-505/PRC-25 tuning knobs for 30.00 mc and set the BAND switch at 30-52.
c. Use a Ballantine Direct Capacity Meter Model 520, or equivalent. Connect the ground lead of the 520 to the RT-505/PRC-25 chassis.
d. Connect the other lead from the 520 to the stator section of tuning capacitor C 1 at (A8), pin 6 (fig. 31).
e. Set the 520 to the X10 uuf scale, loosen the clamp on the C1 tuning shaft, and adjust the shaft of tuning capacitor C1 for an indication of 6.8 on the 520. Note Check to see that this adjustment has been made on the proper side of the capacity-per-degree
rotation curve by turning C1 counterclockwise (from shaft end) and noting that the 520 indicates a decrease in capacity. Reset to 68 microfarads (uuf).
f. Tighten clamp on the Cl tuning shaft.
g. Adjust the RT-505/PRC-25 tuning knobs to 52.95 . The 520 should indicate 10 uuf, or a difference of 58 uuf from the 30.00 mc indication (e above).
h. If a difference of approximately 58 uuf is not obtained, repeat the procedure given in b through g above.
i. Replace module A8 in the chassis.

51. Alignment of Tuning Capacitor C2 (fig. 39)

Align tuning capacitor C2 as outlined below. Do not change the control settings unless specifically directed.
a. Remove module A3 from the chassis.
b. Adjust the tuning knobs for 30.00 mc and set the BAND switch at 30-52.
c. Use a Ballantine Direct Capacity Meter Model 520 or equivalent. Connect
the ground lead to the RT-505/PRC chassis.
d. Connect the other lead of the 520 to the stator section of tuning capacitor C2 at A3, pin 6 (fig. 31).
e. Set the 520 on the X10 uuf scale, loosen the clamp on the C1 tuning shaft, and adjust the s h a ft of the tuning capacitor C2 for an indication of 6.8 on the 520.

Note Check to see that this adjustment has been made on the proper side of the capacity-per-degree rotation curve by turning C2 clockwise (from shaft end) and noting that the 520 indicates a decrease in capacity; reset to 68 uuf.
f. Tighten the clamp on the C2 tuning shaft.
g. Adjust the tuning knobs to 52.95 mc . The 520 should indicate a difference of approximately 58 uuf.
h. If \boldsymbol{a} difference of approximately 58 uuf is not obtained, repeat the procedure given in b through g above.
i. Replace module A3 in the chassis.

Section III. FOURTH ECHELON TESTING PROCEDURES

52. General

a. The testing procedures are prepared for use by Signal Field Maintenance Shops and Signal Service organizations responsible for fourth echelon maintenance of signal equipment to determine the acceptability of repaired signal equipment. These procedures set forth specific requirements that a repaired Receiver -Trans mitter, Radio RT-505/PRC-25 must meet before it is returned to the using organization. The testing procedures may also be used as a guide for the testing of equipment at third echelon if the proper tools and test equipments are available. A summary of the performance standards is given in paragraph 67
b. Comply with the instructions preceding each chart before proceeding to the chart. Perform each test in sequence. Do not vary the sequence. For each step, perform all the actions required in the Test equipment control settings and Equipment under test control settings col-
umns; then perform each specific test procedure and verify it against its performance standard.
53. Test Equipment, Tools, Materials, and Additional Equipment Required
a. General. All test equipment, tools, materials, and other equipment required to perform the testing procedures given in this section are listed in the following charts and are authorized under TA 1117, Signal Field Maintenance Shops, and TA 11-100(11-17), Allowances of Signal Corps Expendable Supplies for Signal Field Maintenance Shop, Continental United States.
b. Special Requirements.
(1) Specific models of test equipment were used to perform the test procedures given in paragraphs 56 through 66. If these test procedures are performed using other models of the test equipments, it may be necessary to allow for test con-
nections or test indications that may differ from those given in the test procedures.
(2) Unless otherwise specified, all tests are to be performed with the RT-505/PRC-25 connected to Battery, Dry BA-386/PRC-25.
(3) The electrical tests should be conducted in a screen room. If available, use Inclosure, Electromagnetic Shielding MX-1761/G or its equivalent.
c. Test Equipment.

Nomenclature	Technical manual
Audio Oscillator TS$382 \mathrm{~F} / \mathrm{U}$.	TM 11-6625-261-12
Voltmeter, Meter ME-30A/U	TM 11-6625-320-12
Frequency Meter AN/USM26.	TM 11-5057
RF Wattmeter AN/URM-43A	TM 11-5133
Signal Generator AN/URM48 (two required).	TM 11-1257
Spectrum Analyzer TS723A/U.	TM 11-5097
Meter, Modulation ME-57/U	TM 11-6625-400-12
Radio Set AN/PRC-25------	TM 11-5820-398-10
Multimeter ME-26 B/U -----	TM 11-6625-200-12
d. Additional Equipment.	

Nomenclature	Federal stock No.
Inclosure, Electromagnetic Shielding MX-1761/G or equivalent.	4940-542-0002
Tool Kit TK-87/U ------------	5180-690-4452
Resistors: 1,000 ohms, $\pm 1 \%, 5$ watts	
10,000 ohms $\pm 5 \%, 1$ watt, variable.	5905-892-6543
15,000 ohms $\pm 5 \%$, 1 watt ---	5905-102-2824
Capacitor, 0.05 uf $\pm 10 \%, 600$ vdc.	5910-112-7619
Dummy antenna, consisting of :a Resistor, 56 ohms, 1 watt (two required)	
Resistor, 510 ohms, 1 watt, $\pm 5 \%$.	5905-114-1607
Connector UG-447/U (two required).	
Aluminum container, 6 in. by $2-1 / 2 \mathrm{in}$. by $2-1 / 2 \mathrm{in}$.	None
Wire, stranded AWG No. 18 (as required).	6145-160-5291
Adapter, UG-274B/U	
Cable Assembly, Radio Frequency CG-1773/U.	5995-823-2985
Toggle switch, single pole, single throw.	5930-655-1517
Test cable No. 1, consisting of: ${ }^{\text {a }}$	

Nomenclature	Federal stock No.
Connector UG-88/U Cable, RG-58/U (36 inches) Test cable No. 2, consisting of a Clip, Electrical, Alligator style. Wire, stranded AWG No. 18.	$6145-542-6092$

${ }^{\text {a Must be fabricated by maintenance personne (Dara 54). }}$

54. Fabrication of Test Cables and Dummy Antenna

a. Dummy Antenna. A special 50 -ohm $20-\mathrm{db}$ pad (dummy antenna) is required to couple the output of Signal Generator AN/URM-48 to the input of the RT-505/ PRC-25. Fabricate the special 50 -ohm, 20-db dummy antenna as shown in figure 41.
b. Test Cable No. 1. Fabricate test cable No. 1 as illustrated in figure 41. c. Test Cable No. 2. Fabricate test cable No. 2 as illustrated in figure 41.

Figure 41. Fabrication details for test cables and special dummy antenna.

55. Physical Tests and Inspection

a. Test Equipment and Materials. None.
b. Test Connections and Conditions. Remove Battery Box CY-2562/PRC-25, Battery, Dry BA-386/PRC-25, and the receiver-transmitter case.

c. Procedure.

8tep No.	Teet equipment control settiage	Equipment under teat control eettinge	Teat procedure	Performance atandard
1	N/A ------------------	Controls may be in any position.	a. Inspect all controls and external assemblies for loose or missing screws. b. Inspect connectors for looseness or damage------ c. Inspect the receiver-transmitter case and front panel for damage, missing parts, and condition of finish. Note: Touchup painting is recommended in lieu of refinishing wherever practicable. Screwheads and connectors will not be painted or polished with abrasives.	a. Screws will be tight; none missing. b. No looseness or damage evident. c. No damage or missing parts evident. Painted external surfaces will not show bare metal. Panel lettering will be legible.
2	N/A -------------------10-1	Controls may be in any position.	a. Turn the BAND and function switches to each of their operating positions. b. Turn the VOLUME and REC-TRANS FREQUENCY (me and kc) controls throughout their limits of travel. Note: Controls will rotate through 360°.	a. Switches operate freely, without binding or excessive looseness. b. Controls rotate freely, without binding or excessive looseness.
3		Controls may be in any positions.	a. Loosen captive screws securing audio and control mother board and swing mother board out on its hinges. Inspect the mother board for loose or missing screws. b. Inspect connections for looseness or damage ----	a. Screws will be tight; none missing. b. No looseness or damage evident.
4		Controls may be in any position.	a. Inspect modules for loose or missing screws b. Inspect connectors for looseness or damage	a. Screws will be tight; none misaing. b. Connectors will be undamaged and firmly seated.

Figure 42. Transmitter power output test setup.

56. Transmitter Power Output Test

a. Test Equipment and Materials.
(1) RF Wattmeter AN/URM-43A.
(2) Handset H-138/U.
(3) Cable Assembly, Radio Frequency CG-1773/U.
b. Test Connections and Conditions. Connect the equipment as shown in figure 42. Turn on the equipment and allow it to warm up for 1 minute.
c. Procedure.

8top No.	Test equipment control settings	Equipment under teat control settlage	Tent prooedure	Performance atandard
1	AN/URM-43A 15W-60W switch: 15W.	BAND awitch: 30-52. REC-TRANS FREQUENCY (mc) control: 30. REC-TRANS FREQUENCY (kc) control: 00. VOLUME control: 0 . FUNCTION switch: ON.	a. Press the H-138/U push-to-talk switch and note the AN/URM-43A meter indication. Release the H-138/Ú push-to-talk switch. b. Repeat step a above with the RT-505/PRC-25 REC-TRANS FREQUENCY controls set to frequencies of 42.00 mcs and 52.95 mcs .	a. The AN/URM-43A meter indicates at least 2 watts. b. Same as a above.
2	Same as step 1 above.	BAND switch: 53-75. REC-TRANS FREQUENCY (mc) control: 53. REC-TRANS FREQUENCY (kc) control: 00. VOLUME control: 0 . Function switch: ON.	a. Press the H-138/U push-to-talk switch and note the AN/URM-43A meter indication. Release the H-138/U push-to-talk switch. b. Repeat step a above with the RT-505/PRC-25 REC-TRANS FREQUENCY controls set to frequencies of 65.00 mcs and 75.95 mes.	a. The AN/URM-43A meter indicates at least 1.5 watts. b. Same as a above.

Figure 43. Tone oscillator frequency and transmitter modulation test setup.

57. Tone Oscillator Frequency and Transmitter Modulation Test

a. Test Equipment and Materials.
(1) RF Wattmeter AN/URM-43A.
(2) Meter, Modulation ME-57/U.
(3) Frequency Meter AN/USM-26.
(4) Handset H-138/U.
(5) Adapter UG-274B/U.
(6) Resistor, 15,000 ohms, 5 percent, 1 watt.
(7) Capacitor, 0.05 uf.
(8) Cable Assembly, Radio Frequency CG-1773/U.
(9) Test Cable No. 1.
b. Test Conditions and Connections. Connect equipment as shown in figure 43. Turn on equipment and allow it to warm up for 30 minutes.
c. Procedure.

8top No.	Test equipment control settinge	Equipment under toat control settinge	Test procedure	Performance standard
1	AN/URM-43A 15W-60W switch: 15W. AN/USM-26 FUNCTION SELECTOR switch: FREQUENCY. FREQUENCY UNIT switch: 1. DISPLAY TIME control: fully counterclockwise. MDXING FREQUENCY MCS control: 0. GAIN control: MIN. $M E-57 / U$ TUNE-FINE TUNE switch: TUNE. DEVIATION RANGE KC switch: 1000 TUNE. FREQUENCY RANGE-MC switch: 20-55. FREQUENCY RANGE-MC TUNING control: 41.	BAND switch: 30-52. REC-TRANS FREQUENCY (mc) control: 41. REC-TRANS FREQUENCY (kc) control: 00. Function switch: ON. VOLUME control: 5.	a. Remove module A23 b. Press and hold the H-138/U push-to-talk switch c. Adjust the ME-57/U TUNING control until the CARRIIER SHIFT meter reads zero. d. Set the ME-57/U TUNE-FINE TUNE switch to the FINE TUNE position. e. Adjust the ME-57/U TUNING control until the CARRIER SHIFT meter again reads zero. f. Adjust the RT-505/PRC-25 VOLUME control until the ME-57/U LIMITING meter reads in the black area. g. Release the H-138/U push-to-talk switch h. Replace module A23	a. None. b. None. c. None. d. None. e. None. f. None. g. None. h. None.
2	Same as step No. 1.	Same as step No. 1.	a. Press and hold the H-138/U push-to-talk switch b. Turn the ME-57/U DEVIATION RANGE KC switch to obtain the highest reading on the DEVIATION meter without pegging the meter. Note: When the 1000 TUNE position is used, multiply the $0-100$ scale reading on the DEVIATION meter by 10 . c. Adjust the AN/USM-26 GAIN control until the shadow in the tuning eye just closes. d. Release the H-138/U push-to-talk switch	a. None. b. Deviation should be $3.0 \pm 0.5 \mathrm{kc}$. c. Frequency should be $150 \pm 1.5 \mathrm{cps}$. d. None.

58. System Distortion Test
a. Test Equipment and Materials.
(1) Voltmeter, Meter $\mathrm{ME}-30 \mathrm{~A} / \mathrm{U}$ (two required).
(2) Audio Oscillator TS-382F/U.
(4) Radio Set AN/PRC-25.
(5) Potentiometer, 10,000 ohms, ± 5 percent, 1 watt.
(6) Resistor, $15,000 \mathrm{ohms}$, ± 5 percent, 1 watt
(7) Resistor, 150 ohms, ± 5 percent, 1 watt.
(8) Resistor, 1,000 ohms, ± 1 percent, 5 watts
(9) Toggle switch, signal pole, single
(10) Test cable No. 2 (four required).
b. Test Conditions and Connections. Two men are required to perform this test. Connect the equipment as shown in figure 44 and install Antenna AT-892/PRC in the RT-505/PRC-25's for the test. Turn on equipment and allow it to warmup for 5 minutes.

${ }_{\substack{\text { suep } \\ \text { No. }}}^{\text {a }}$	Test equipment control settings	$\underbrace{\substack{\text { couto } \\ \text { setiings }}}_{\text {Equipment under lest }}$	Test procedures	Perlomance standard
1	ME-30A/U No. 1 Power switch: ON. Range selector switch: $M E-30 \mathrm{~A},-50 \mathrm{DB}$. Power switch: ON. Range Selector switch: 3 VOLTS, +10 DB . FREQUENCY MULTI- PLIER switch: X10. Tuning dial: 100 . MULTIPLIER switch: X1 volts. OU_ PUT CONTROL: fully ounterclockwise. Funt-50/BRC-25 No. BAND switch: $30-52$. REC-TRANS FREQUENCY (me) control: 41. REC-TRANS FREQUENCY OLUME control:		a. Set the TS-382F/U OUTPUT CONTROL to its maximum clockwise position. Adjust the 10, 000 -ohm potentiometer until ME- No. 1 indicates 1.4 millivolts (mv). b. Close the toggle switch on RT-505/PRC-25 No. c. Adjust RT-505/PRC-25 No. 2 VOLUME control until ME-30A/U No. 2 indicates 1 volt.	a. None. b. None. c. None.
2	Same as in step No. 1 ,except TS-723A/U Frequeney RANGE switch: X10. FREQUENCY controls: dial indication of 100. Signal INPUT control: MIN. AF-RF selector switch: AF. Function switch: SET LEVEL. Meter range switch: 100%.	Same as in step No. 1.	Adjust the TS-723A/U as follows: a. Slowly turn the signal INPUT control clockwise until the TS-723A/U meter pointer reaches full scale deflection. b. Turn the function switch to DISTORTION. (upper) until the TS-723A/U meter pointer drops sharply. d. Adjust the fine FREQUENCY control knob (lower) for maximum dip of the meter pointer. Note: The enning becomes mand ing decreases. e. Adjust the BALANCE meter reading. ote: The uning becomes more critical as the meter read. ing decreases. f. Readjust the FREQUENCY and BALANCE controls until no further reduction in the meter reading can be obtained. As adjustment progresses, decrease the setting of the meter range switch to maintain a midscale g. Note the TS-723/U meter reading.	a. None. b. None. c. None. d. None. e. None. f. None. g. TS-723A/U meter indicates distortion of 10 percent or less.

This page left blank intentionally.

Figure 45. Frequency accuracy test setup.
59. Frequency Accuracy Test
a. Test Equipment and Materials.
(1) RF Wattmeter AN/URM-43A.
(2) Frequency Meter AN/USM-26.
(3) Adapter UG-274B/U
(4) Handset H-138/U.
(5) Cable CG-530/U.
(6) Cable Assembly, Radio Frequency CG-1773/U.
b. Test Conditions and Connections. Connect the equipment as shown infigure 45, Turn on the equipment and allow it to warmup for

$\substack{\text { siep. } \\ \text { No }}$	Teat equipment control settings	Equipment under test control settinge	Toat prooeduro	Portormanoo atanderd
1	AN/OSM-26 FUNCTION SELECTOR switch: FREQUENCY. FREQUENCY UNTT switch: IISLAY TIME control: fully counterclockwise. RANGE-MC switch: 40-100. MIXING FREQUENCY MCS switch: 70 . TUNING control: 70. GAIN control: MAX. 15W-60W switch: 15 W .	BAND switch: 53-75. REC-TRANS FREQUENCY (mc) control: 75. FREQUENCY (kc) control: 00. Function switch: ON. VOLUME control: 5. VOLUME control: 5.	a. Press the $\mathrm{H}-138 / \mathrm{U}$ push-to-talk switch \qquad b. Adjust the AN/USM-26 TUNING control until minimum shadow is obtained on the tuning eye. If the shadow overlaps, reduce the control. c. Adjust the GAIN control until the shadow of the tuning eye just closes, but does not overlap. d. Compute the frequency by adding the reading of MIXING FREQUENCY MCS switch (fredisplay system (frequency in kilocycles). e. Release the H-138/U push-to-talk switch	a. None. b. None. c. None. d. $75.00 \mathrm{mc} \pm 3.5 \mathrm{kc}$. e. None.
2	Same as step No. 1.	Same as step No. 1, except. REC-TRANS FREQENCY (kc) control: 05. cos.	Same as step No. 1 above ---------------------	$75.05 \mathrm{mc} \pm 3.5 \mathrm{kc}$.
3	Same as step No. 1.		Same as step No. 1 above ---------------------	$75.10 \mathrm{mc} \pm 3.5 \mathrm{mc}$.
4	Same as step No. 1.	Same as stap No. 1, except: RECTRANS FREQUENCY (kc) control: 20.	Same as step No. 1 above --------------------	$75.20 \mathrm{mc} \pm 3.5 \mathrm{kc}$
5	Same as step No. 1.	Same as step No. 1, except: FEC.TRANS FREQENCY (kc) control: con.	Same as step No. 1 above ---------------------	$75.30 \mathrm{mc} \pm 3.5 \mathrm{kc}$.
6	Same as step No. 1.	Same as step No. 1, except: RECTRANS FREQENCY control: 40.	Same as step No. 1 above -----------------------	$75.40 \mathrm{mc} \pm 3.5 \mathrm{kc}$.
7	Same as step No. 1.		Same as step No. 1 above ---------------------	$75.50 \mathrm{mc} \pm 3.5 \mathrm{kc}$.
8	Same as step No. 1.	$\begin{array}{\|c\|} \hline \text { Same as step No. } 1, \\ \text { except: } \\ \text { REC-TRANS } \\ \text { FREQUENCY (kc) } \\ \text { control: } 60 . \\ \hline \end{array}$	Same as step No. 1 above --------------------	$75.60 \mathrm{mc} \pm 3.5 \mathrm{kc}$.
9	Same as step No. 1.	Same as stap No. 1, excoept. REC-TRANS RREQENCY (kc) control: 70.	Same as step No. 1 above --------------------	$75.70 \mathrm{mc} \pm 3.5 \mathrm{kc}$.
10	Same as step No. 1.	Same as step No. 1, except. RECTRANS FREQENCY Fontrol: conc.	Same as step No. 1 above ----------------------	$75.80 \mathrm{mc} \pm 3.5 \mathrm{kc}$.
11	Same as step No. 1.		Same as step No. 1 above ---------------------	$75.90 \mathrm{mc} \pm 3.5 \mathrm{kc}$.
12	Same as step No. 1.	Same as step No. 1, except: REC-TRANS FREQUENCY (kc) control: 95.	Same as step No. 1 above --------------------	$75.95 \mathrm{mc} \pm 3.5 \mathrm{kc}$.
13	Same as step No. 1, except: AN/OSM-26: MIXING FREQUENCY iNTS switch: 50 . TUNING control: 20.		Same as atep No. 1 above ---------------------	$52.00 \mathrm{mc} \pm 3.5 \mathrm{kc}$.

This page left blank intentionally.

Figure 46. Maximum signal plus noise-to-noise ratio test setup.

60. Maximum Signal Plus Noise-to-Noise Ratio Test

a. Test Equipment and Materials.
(1) Voltmeter, Meter ME-30A/U.
(2) Audio Oscillator TS-382F/U.
(3) Radio Set AN/PRC-25.
(4) Potentiometer, $10,000 \mathrm{ohms}$, ± 5 percent, 1 watt.
(5) Resistor, 15,000 ohms, ± 5 percent, 1 watt.
(6) Resistor, $150 \mathrm{ohms}, \pm 5$ percent, 1 watt.
(7) Resistor, $1,000 \mathrm{ohms}, \pm 1$ percent, 5 watts.
(8) Toggle switch.
(9) Test cable No. 2 (four required).
b. Test Conditions and Connections. Two men are required to perform this test. Connect equipment as shown in figure 46 and install Antenna AT-892/PRC in the RT-505/PRC-25's for all tests. Turn on equipment and allow it to warmup for 1 minute.
c. Procedure.

step No.	Test equipment control settings	Equipment under teat control settinge	Tent procedure	Performanoe standard
1	$T S-382 F / D$ FREQUENCY MULTIPLIER switch: X10. Tuning dial: 100. OUTPUT MULTIPLIER switch: X1 VOLTS. OUTPUT CONTROL: fully counterclockwise. ME-30A/U No. 1 Power switch: ON. Range selector switch: . 003 VOLTS, -50 DB. ME-30A/U No. 2 Range selector switch: 10 VOLTS, +20 DB. RT-505/PRC-25 No. 1 BAND switch: 30-52 mc. REC-TRANS FREQUENCY (mc) control: 41. REC-TRANS FREQUENCY (kc) control: 00. Function switch: ON. VOLUME control: 00.	RT-505/PRC-25 No. 2 BAND switch: 30-52. REC-TRANS FRE- QUENCY (mc) control: 41. REC-TRANS FRE- QUENCY (kc) control: 00. Function switch: ON. VOLUME control: 5.	a. Set the TS-382F/U OUTPUT CONTROL at its maximum clockwise position. Adjust the 10K potentiometer until ME-30A/U No. 1 indicates 1.4 millivolts (mv). b. Note and record ME-30A/U No. 2 meter indication.	a. None. b. None.
2	Same as in step No. 1 , except: ME-30A/U No. 2 Range selector switch: 100 VOLTS, +50 DB .	Same as atep No. 1 above.	a. Close the toggle switch. b. Note and record ME-30A/U No. 2 meter indication. c. Open the toggle awitch.	a. None. b. Indication should be at least 40 db greater than that of step 18. c. None.

Figure 47. Receiver audio output power test setup.

61. Receiver Audio Output Power Test

a. Test Equipment and Materials.
(1) Voltmeter, Meter ME-30A/U.
(2) Signal Generator AN/URM-48.
(3) Audio Oscillator TS-382F/U.
(4) Dummy antenna.
(5) Resistor 1,000 ohms, ± 1 percent, 5 watts.
(6) Cord CG-530/U.
(7) Test Cable No. 2 (two required).
b. Test Connections and Conditions. Connect the equipment as shown in figure 47. Turn on equipment and allow it to warmup for 5 minutes.

c. Procedure.

$\begin{aligned} & \text { stop } \\ & \text { No. } \end{aligned}$	Teat equipment control settings	Equipment under tent control sottinge	Tout procodure	Peflormance atundard
1	ME-30A/U Power switch: ON. Range selector switch: 3 VOLTS, +10 DB. AN/URM-48 BAND SWITCH: C. RF TUNING control: 41. DEVIATION RANGE switch: 25. OPERATION switch: EXT MOD. DEVIATION LEVEL control: 10 on KLLOCYCLES DEVIATION meter. RF SET TO LINE control: right-hand meter needle to redline. RF ATTENUATOR MICROVOLTS control: 400 microvolts on righthand meter. $T S-382 F / U$ FREQUENCY MULTIPLIER switch: X10. Tuning dial: 100 . OUTPUT MULTIPLIER switch: X1. OUTPUT CONTROL: fully counterclockwise.	BAND switch: 30-52. REC-TRANS FREQUENCY (mc) control: 41. REC-TRANS FREQUENCY (kc) control: 00. Function switch: ON. VOLUME control: 10.	Note the ME-30A/U meter indication.	The ME-30A/U should indicate at least 2 volts.

Figure 48. Receiver sensitivity test setup.
62. Receiver Sensitivity Test
a. Test Equipment and Materials.
(1) Voltmeter, Meter ME-30A/U.
(2) Signal Generator AN/URM-48.
(3) Spectrum Analyzer TS-723A/U
(4) Audio Oscillator
(5) Dummy antenna.
(5) Dummy antenna.
(6) Resistor 1,000 ohms, ± 1 perce
(7) Test cable No. 2 (two required). 5 watt.
b. Test Connections and Conditions. Connect the equipment as shown in figure 48. Turn on the equipment and allow it to warmup for 5 minutes.
c. Procedure.

Stop		Eautoment under hast	Tost procedure	Portormanoos atanderd
1		BAND switch: 30-52 REC-TRANS FREQUENCY (mc) control: 30 . QUENCY FREQUENCY (kc) control: 00. Function switch: ON. VOLUME control: 5. VOLUME control: 5.	a. Adjust the AN/URM-48 RF TUNING control for b. Ad peak indication on the ME-30A/ U. \qquad a 1 -volt indication on the $\mathrm{ME}-30 \mathrm{~A} / \mathrm{U}$. c. Turn the TS-723A/U function switch to SET d. Slowly rotate the TS-723A/U signal INPUT control clockwise until the TS-723A/U meter pointer reaches full scale deflection (1.0). o. Set the TS-723A/U meter range switch to +10 db . slowly rotate the TS-723A/U signal INPUT con- trol until the TS-723A/U meter pointer rests at 0 DECIBEIS. g. Turn the TS-723A/U function switch to DISTORTHON. h. Adjust the TS-723A/U coarse FREQUENCY control untll the TS-723A/U meter pointer dips sharply. i. Adjust the TS-723A/U fine FREQUENCY control for the maximum dip of the TS-723A/U meter pointer. f. Adjust the TS-723A/U BALANCE control for the minimum TS-723A/U meter reading. k. Readjust the TS-723A/ FREQUENCY and BALANCE controns unin no further reduction in the TS-723A/U meter indication can be crease the setting of the metor range switch to maintain midscale meter deflections. 1. Record the TS-723A/U meter indication; then LEVEL and record the TS-723A/U meter indication.	a. None. b. None. c. None. d. None. e. None. f. None. g. None. h. None. i. None. j. None. k. None. 1. TS-723A/U meter indication obtained In DISTORTION position should be at least 10 db lower than the meter indication obtained in the SET LEVEL position.
2		Same as atep No. 1 except: REC-TRANS FREQUENCY (mc) control: 41. rec-trans freQUENCY (kc) control: Oo.	Repeat step 1 above ----	Same as step 1 above.
3	Same as step No. 1, ex- cept: AN/ORM-48 BAND SWITCH: D. RF TUNING control: 52.	Same as step No. 1 except: REC-TRANS FRE- QUENCY (mc) control: 52 . rec-trans freQUENCY (kc) control: 00 .	Repeat step 1 above ---	Same as stop 1 above.
4	cept \qquad BAND SWITCH: D RF TUNING control: 53.		Repeat tep 1 above -------------------	Same as step 1 above.
5	Same as step No. 1, except AN/URM-48 BAND SWITCH: D. RF TUNING control: 65.		Repeat step 1 above ------	Same as step 1 above.
6	Same as step No. 1, except: AN/URM-48 BAND SWITCH: E. RF TUNING control: 75.95.		Repeat step 1 above ------------------------1-1	Same as step 1 above.

This page left blank intentionally.

Figure 49. Receiver catching range test setup.
63. Receiver Catching Range Test
a. Test Equipment and Materials.
(1) Voltmeter, Meter ME-30A/U.
(2) Signal Generator AN/URM-48.
(3) Audio Oscillator, TS-382F/U.
(4) Dummy antenna.
(5) Resistor 1,000 ohms, ± 1 percent, 5 watts.
(6) Cord CG-530/U.
(7) Test cable No. 2 (two required).
b. Test Connections and Conditions. Connect the test equipment as shown in figure 49. Turn on equipment and allow it to warmup for 5 minutes.
c. Procedure.

$\begin{aligned} & \text { Stop } \\ & \text { No. } \end{aligned}$	Teat equipment control settings	Equipment under test control aettinge	Test procedure	Porformanoe atandard
1	$M E-30 A / D$ Power switch: ON. Range selector switch: 3 VOLTS, +10 DB . AN/ORM-48 BAND SWITCH: B. RF TUNING control: 31.5. DEVIATION RANGE switch: 25. OPERATION switch: EXT MOD. DEVIATION LEVEL control: set for 10 on KILOCYCLE DEVIATION meter. RF SET TO LINE control: redline on right-hand meter. RF ATTENUATOR MICROVOLTS control : 40 microvalts on righthand meter. $T S-382 F / D$ FREQUENCY MULTIPLIER switch: X10. Tuning dial: 100. OUTPUT MULTIPLIER switch: X1. OUTPUT CONTROL: fully counterclockwise.	BAND: 30-52. REC-TRANS FREQUENCY (mc) control: 31.	Adjust the RT-505/PRC-25 VOLUME control for a 1 -volt indication on the ME-30A/U. a. Disable the RT-505/PRC-25 crystal switch assembly by disengaging the mechanical coupling (A10). b. Rotate the RT-505/PRC-25 REC-TRANS FREQUENCY (kc) control higher in frequency in 50-kc increment. c. Turn the RT-505/PRC-25 function switch momentarily from ON to OFF, then back to ON after each change of frequency. d. Record the highest RT-505/PRC-25 frequency at which an indication is obtained on the ME30A/U. e. Rotate the RT-505/PRC-25 REC-TRANS FREQUENCY (kc; control lower in frequency in 50-kc increments. f. Turn the RT-505/PRC-25 function switch momentarily from ON to OFF, then back to ON after each change of frequency. g. Record the lowest RT-505/PRC-25 frequency at which an indication is obtained on the ME$30 \mathrm{~A} / \mathrm{U}$. h. Engage the cryatal switch by turning the RT-505/PRC-25 REC-TRANS FREQUENCY control. (Mechanical coupling is self-engaging.)	a. None. b. None. c. None. d. Frequency should be at least 300 kc higher than 31.50 mcs . e. None. f. None. g. Difference between the upper and lower frequency indications should be at least 600 kc . h. None.
2	Same as step No. 1, except: AN/OSM-48 BAND SWITCH: D. RF TUNING control: 51.5.	```Same as step No. 1, except: REC-TRANS FRE- QUENCY (mc) control: 51. REC-TRANS FRE- QUENCY (kc) control: 50.```		Frequency indication for 51.50 mc should be the same as indicated for 31.50 mc in $1 d$ and g above.

This page left blank intentionally.

Figure 50. Squelch sensitivity test setup.
64. Squelch Sensitivity Test
a. Test Equipment and Materials.
(2) Sigonal renerator AN/URM-48 (2 required).
(3) Audio Oscillator TS-382F/U.
(4) Spectrum Analyzer TS-723A/U.
(5) Multimeter ME-26B/U
(6) Dummy antenna.
7) Resistor 1,000 ohms, ± 1 percent, 5 watts
8) Adapter UG-274B/U
(10) Test cable No. 2 (2 required).
b. Test Connections and Conditions. Connect the equipment as shown in figure 50. Turn on the equipment and allow it to warmup for 5 minutes.

${ }_{\substack{\text { siop. } \\ \text { No. }}}^{\text {coser }}$			Teot proodure	Portormanoo atanderd
1	ME-30A/U Rower swilector switch: Range selector 3 VOLTS, +10 DB. TS-382F/U FREQUENCY MULTI- PLIER switch: Tuning dial: 150 . OUTPUT MULTIPLIER switch: X1. OUTPUT CONTROL: fully clockwise. Signal TS-723A/U AF-RF selector switch: RF. Frequency RANGE switch: 10 . FREQUENCY tuning dials: 100 . Function switch: Meter range switch: 100%. AN/URM-48 No. 1 RF TUNING control: 30 mc. DEVIATION RANGE switch: 25. OPERATION switch: 1000~. DEVIATION LE VEL con- trol: 0 on KILOCYCLES DEVIATION meter. right-hand meter pontrol: right-hand meter pointer to redline. RF ATTENUATOR MICROVOLTS control: 0 microvolt on right- hand meter. AN/URM-48 No. 2 BAND SWITCH: B. RF TUNING control: 30 DEVIATION RANGE switch: 25. OPERATION Bwitch: EXT MOD. DEVIATION LEVEL con- trol : 0 on KILOCYCLES DEVIATION meter. RF SET TO LINE control: right-hand meter pointer RF MIT MICROVOLTS control: hand meter.	BAND switch: 30-52 me. QUENCY (mc) control: 30 . REC-TRANS FREQUENCY (kc) control: 00. VOLUME control: Adjusted for a 1 volt indication on the $\mathrm{ME}-30 \mathrm{~A} / \mathrm{U}$.	a. Set AN/URM-48 No. 2 DEVIATTON LEVEL control for a 3 -kc indication on the KILOCYCLES ATION LEVEL control; then return it to its extreme counterclockwise position. b. Set An/URM-48 No. 1 deviation Level control for a 10 kc indication on the KILOCYCLES DEVIATION meter. c. Set AN/URM-48 No. 1 RF ATTENUATOR MICROVOLTS control for a reading of 10 on d. Turn the RT-505/PRC- 25 function switch to the SQUELCH position. 2 deviation level con- f. Set AN/URM-48 No. 1 RF ATTENUATOR MICROVOLTS control for a reading of 0 on the right-hand meter.	a. None. b. None. c. None. d. None. e. ME-30A/U should indicate an output. ME-26B/U should indicate 0 ohm (squelch relay energized). f. ME-30A/U should indicate no output. ME-26B/U indicates an open circuit deenergized).
${ }^{2}$	Same as step 1, except AN/ORM-48 No. RF TUNING control $A N / U R M-48$. 41 MC BAND SWITCH: C. RF TUNING control : 41 MC		Repeat step 1 above ---	Same as step le and f.
${ }^{3}$	Same as step 1, except: AN URM-48 No. BAND SWITCH: C. RF TUNING control: 52MC AN/URM-48 No. 2 BAND SWITCH: C. RF TUNING control: 52 MC		epeat step 1 above	Same as step le and f.
4	Same as step 1 , except $A N / U R M-48$ No. 1 AN/URM-48 No. BAND SWITCH: C. RF TUNING control: 53MC AN/URM-48 No. 2 BAND SWITCH: C. RF TUNING control: 53MC	Same as step 1, ex cept: Quikans freQUENCY (mc) control: 53. REC-TRANS FRE- QUENCY control (kc): 00. Function switch: ON.	epeat step 1 above	Same as step $1 e$ and f.
${ }^{5}$	Same as step 1 , except: ${ }^{A N / U R M-48}$ No. RF TUNING control: 65 MC AN/URM-48 No. 2 RF TUNING control: 65MC		Repeat step 1 above	Same as step le and f.
6	Same as step 1, except AN/URM-48 No. 1 BAND SWITCH: E. RF TUNING control: 75MC AN/ORM-48 No. 2 BAND SWITCH: E. RF TUNING control: 75MC	Same as step 1, except: REC-TRANS FREQUENCY (mc) REC-TRANS FREQUENCY (kc) control: 00.	Repeat step 1 above	Same as step le and f.

This page left blank intentionally.

Figure 61. Receiver distortion test setup.
65. Receiver Distortion Test
a. Test Equipment and Materials.
(1) Signal Generator AN/URM-48.
(2) Spectrum Analyzer TS-723A/U
(3) Voltmeter, Meter ME-30A/U.
(4) Audio Oscillator TS-382F/U.
(5) Dummy antenna.
(6) Resistor 10,000 ohms, ± 1 percent, 5 watts.
(7) Cord CG-530/U.
(8) Test cable No. 2 (four required).
b. Test Connections and Conditions. Connect the test equipment as shown infigure 51. Turn on equipment and allow it to warmup for 5 minutes.

$\begin{gathered} \text { supp. } \\ \text { no. } \end{gathered}$	Test equipment control settinge		Teat proceduro	Pertomanoos standerd
1	$M E-30 A / U$ switch: ON. Power switch: ON. Range selector switch: 3 VOLTS, +10 DB. TS-723A/ 0 Frequency RANGE switch: X10. FREQUENCY controls: dial indication of 100. MIN. MUNCTION switch: SET LEVEL. Meter range switch: 100%. AF-RF selector switch: AF. AN/ORM-48 BAND SWITCH: C. RF TUNING control: 41 MC . DEVIATION RANGE switch: 25. OPERATION switch: EXT MOD. DEVIATION LEVEL con- rol: 10 on KILOCYCLES DEVIATION meter. RF SET TO LINE control: right-hand meter pointer to redline. RF ATTENUATOR MICROVOLTS control 400. microvolts on right-hand meter. $\dot{T} S-382 F / D$ FREQUENCY MULTI- PLIER control: X10. Tuning dial: 100 . switch: X1. OUTPUT CONTROL: fully clockwise.	BAND switch: 30-52 me. QUENCY (mc) REC-TRANS FRE- QUENCY (kc) Function switch: ON VOLUME control: 0.	Adjust the RT-505/PRC-25 for a ME-30A/U meter indication of 1 volt.	None.
2	Same as step No. 1.			a. None. b. None. c. None. d. None. e. None. f. None. g. TS-723A/U distortion indication of 5\% or less.
3	Same as step No. 1.	Same as step No. 1.	a. Adjuat the RT-505/PRC-25 VOLUME control for a 2 -volt indication on the ME-30A/U. b. Disconnect the ME-30A/U c. Perform the procedures in step 2 above	a. None b. None. c. TS-723A/U distortion indication of 10% or less.

This page left blank intentionally.

Figure 62. Transmitter deviation test setup.
66. Transmitter Deviation Test
a. Test Equipment and Materials.
(1) Audio Oscillator TS-382F/U.
(2) Voltmeter, Meter ME-30A/U.
(4) RF Wattmeter AN/URM-43A.
(5) Test cable No. 2 (two required)
(6) Cable CG-1773/U.
(8) Potentiometer, 10,000 ohms, 5 percent, 1 watt.
(9) Resistor, 15,000 ohms, 5 percent, 1 watt.
(10) Resistor, 150 ohms, 5 percent, 1 watt.
(11) Toggle switch.
b. Test Connection and Conditions. Connect the test equipment as shown in figure 52. Turn on equipment and allow it to warmup for 30 minutes.

Step	Test equipment control settings	Equipmont udater fest	Teat procedure	Poftormanco etanderd
1	Power switch: $M E-30 A / U$ Range selector switch 003 VOLTS, -50 DB . $T S-382 F / U$ FREQUENCY MULTIPLIER switch: X Tuning dial: 100 . OUTPUT MULTIPLIER: X1. OUTPUT CONTROL: fully counterclockwise. AN/URM-43A 15W-60W switch: 15 W. $M E-57 / U$ ME-57/U TUNE-FINE TUNE switch: TUNE. DEVIATION RANGE KC switch: 1000 TUNE. switch: 20-55. FREQUENCY RANGE-MC TUNING control: 30 .	BAND switch: 30-52. REC-TRANS FRE- QUENCY (mc) control: 30. REC-TRANS FRE- QUENCY (kc) Control: 00. Function switch: ON.	a. Adjust the TS-382F/U OUTPUT CONTROL until the $\mathrm{ME}-30 \mathrm{~A} / \mathrm{U}$ indicates 1.4 millivolts. b. Discoonect the $\mathrm{TS}-382 \mathrm{~F} / \mathrm{U}$	$\begin{aligned} & \text { a. None. } \\ & \text { b. None. } \end{aligned}$
2	Same as step No. 1 above.	Same as step No. 1.		a. None. b. None. c. None. d. None. e. None. f. None. g. Deviation should be $10 \pm 2 \mathrm{kc}$. h. None.
3	Same as step No. 1, except: ME-57/0 FREQUENCY RANGE-MC TUNING control: 52	$\begin{array}{\|l\|} \hline \text { Same as step No. } 1, \\ \text { except: } \\ \text { REC-TRANS FRE- } \\ \text { QUENCY (mc) } \\ \text { control: } 52 . \end{array}$	Repeat steps 1 and 2 above. Record reading -----	Same as step No. 28 above.
4	```Same as step No. 1, ex- cept: ME-57/U frequency range-mc TUNING control: 54,```	Same as step No. 1, except: BAND switch: 53-75 REC-TRANS FRE- QUENCY (mc	Repeat steps 1 and 2 above. Record reading -----	Same as step No. 28 above.
5	Same as step No. 1, except: $M E-57 / 0$ FREQUENCY RANGE-MC TUNING control: 75.	Same as step 4 above except: REC-TRNS RRE- QUENCY (mes control: 75.	Repeat steps 1 and 2 above. Record reading ------	Same as step No. 2 g above.
6		Same as in step 1 above.	a. Connect ME-30A/U as shown in figure 52. Adjust the TS-382F/U OUTPUT CONTROL until the ME-30A/U indicates 7.1 millivolts. b. Disconnect ME-30A/U c. Disconnect TS-382 F/U \qquad d. Repeat step 2 above \qquad	a. None. b. None. c. None. d. Indication should not be more than 1.414 times that indicated in step $2 g$.
7	Same as step No. 1, except: $M E-30 A / U$ Range selector switch . 01 VOLTS, -40 DB . ME-57/U FREQUENCY RANGE-MC TUNING control: 52.	except REC-TRANS FRE QUENCY (MC): 52.	Repeat step 6 above	Indication should not be more than 1.414 times that indicated in step 3.
8	Same as step No. 1, ex- cept: $M E-30 A / U$ Range selector switch: .01 VOLTS -40 DB . ME-57/V FREQUENCY RANGE-MC TUNING control: 54.	Same as step No. 4.	Repeat step 6 above	Indication should not be more than 1.414 times that indicated in step 4.
9	```Same as step No. 1, ex- cept: \(M E-30 A / U\) Range selector switch: .01 VOLTS, -40 DB . ME-57/U FREQUENCY RANGE-MC TUNING control: 75 .```	Same as step No. 5.	Repeat step 6 above -	Indication should not be more than 1.414 times that indicated in step 5.

67. Summary of Test Data

Personnel may find it convenient to arrange the checklist in a manner similar to that shown below.

	Test	Test data	Performance standard
1.	TRANSMITTER POWER OUTPUT a. 30.00 mc b. 42.00 mc c. 52.95 mc d. 53.00 mc e. 65.00 mc f 75.95 mc		2 watts minimum 2 watts minimum 2 watts minimum 1.5 watts minimum 1.5 watts minimum 1.5 watts minimum
	TONE OSCILLATOR FREQUENCY AND TRANSMITTER MODULATION a/ Frequency deviation at 41.00 mc b. Modulating frequency at 41.00 mc		$\begin{aligned} & 3.0 \mathrm{kc} \pm 0.5 \\ & 150 \mathrm{cps} \pm 1.5 \end{aligned}$
3.	SYSTEM DISTORTION Distortion at 41.00 mc		10\% max
4.	FREQUENCY ACCU- RACY a. 75.00 mc b. 75.05 mc C. 75.10-75.90 mc (in $100-\mathrm{kc}$ increments) d. 75.95 mc e. 52.00 mc		
5.	MAXIMUM SIGNAL PLUS NOISE-TO- NOISE RATIO At 41.00 mc	-	Not less than 40 db greater than indication in test procedure step lb para 60]c).
6.	RECEIVER AUDIO OUTPUT POWER At 41.00 mc	-	Not less than 2 volts on ME$30 \mathrm{~A} / \mathrm{U}$.
7.	RECEIVER SENSITIVITY a. 30.00 mc b. 41.00 mc c. 52.00 mc d. 53.00 mc e. 65.00 mc f. 75.95 mc		10 db less in DIS- TORTION posi- tion than SET LEVEL position on TS-723A/U. Same as above.

	Test	Test data	Performance standar
	RECEIVER CATCHING RANGE a. 31.50 mc b. 51.50 mc	-	300 kc minimum deviation above and below 31.50 mc . 300 kc minimum deviation above and below 31.50 mc .
	SQUELCH SENSITIVITY a. Function switch in SQUELCH (30. 00 mc). b. Function switch in SQUELCH (41. 00 mc). c. Function switch in SQUELCH (52. 00 mc). d. Function switch in SQUELCH (53. 00 mc). e. Function switch in SQUELCH (65. 00 mc.) f. Function switch in SQUELCH (75. 00 mc).	- - - - - - -	Squelch relay energizes when speci fied audio level is present. Same as above. Same as above. Same as above. Same as abwe. Same as above.
	RECEIVER DISTOR- TION a. At 41.00 mc b. At 2 -volt output	-	$\begin{aligned} & 5 \% \max \\ & 10 \% \max \end{aligned}$
	TRANSMITTER DEVIATION. (ME-30A/U range selector switch at . 003 VOLTS, -50DB) a. 30.00 mc b. 52.00 mc c. 54.00 mc d. 75.00 mc	-	$\begin{array}{llll} 10 & \mathrm{kc} & \pm & 2 \\ 10 & \mathrm{kc} & \pm & 2 \\ 10 & \mathrm{kc} & \pm & 2 \\ 10 & \mathrm{kc} & \mathbf{~} & 2 \end{array}$
12.	TRANSMITTER DEVIATION. (ME-30A/U range selector switch at .O1 VOLTS, -40DB) a. 30.00 mc b. 52.00 mc c. 54.00 mc d. 75.00 mc	-	Less than 1.414 of 11a. Less than 1.414 of 11 b . Less than 1.414 of 11c. Less than 1.414 of 11 d .

68. Scope of Fifth Echelon Maintenance

The functions allocated to fifth echelon maintenance level include troubleshooting, repair, and alignment of modular assemblies. Also included is replacement of parts in the selector mechanism assembly and in module A10.
69. Test Equipment and Additional Equipment Required

> a. Test Equipment.

Item	Technical manual
Audio Oscillator TS-382F/U	TM 11-6625-261-12
Voltmeter, Meter ME-30A/U	TM 11-6625-320-12
Frequency Meter AN/USM-26	TM 11-5057
Meter, Modulation ME-57/U	TM 11-6625-400-12
Multimeter ME-26B/U --m----	TM 11-6625-200-12
Oscilloscope AN/USM-50A----	TM 11-5129
R. F. Signal Generator AN/	TM 11-5551E
URM-25F.	
Signal Generator AN/URM-48	TM 11-1257
Radio Frequency Wattmeter	TM 11-5133
AN/URM-43A.	
Spectrum Analyzer TS-723B/U	TM 11-5097
RF Millivoltmeter 411A	
Transistor Power Supply 721A	

b. Additional Equipment Required.
(1) Battery cable; a three-conductor cable of suitable length, with a battery plug on one end, and a battery receptacle on the other.
(2) Alignment cover (fig. 2b).
(3) Module extender (fig. 27).
(4) Adapter UG-274B/U.
(5) Resistor, 470-ohm, I-watt.
(6) Handset $\mathrm{H}-138 / \mathrm{U}$.
(7) Dummy antenna (fig. 41).
70. General

Caution: Refer to the caution notice on the inside front cover of this manual before connecting equipment or making tests.
a. The module assembly trouble isolation procedures given in this chapter are organized to localize and isolate trouble in defective modules of the RT-505/PRC25. A separate procedure is provided for
each module. Each procedure, where applicable, consists of preparation instructions, test and alignment procedures, and faulty part isolation information.
b. Rf test signals are unmodulated unless otherwise specified. When the frequency of a signal generator is specified without an accompanying tolerance (an example of frequency with a tolerance specified is $29,950 \mathrm{kc} \pm 5$), set the frequency, by using the AN/USM-26, to the exact number of significant figures designated.
c. Use a receiver-transmitter (that is known to be good) as a test set. When working on a module, remove the cover and plug the module into the test set. When alignment is required, replace those covers that have alignment holes. Use the module extender (fig, 27) only when directed.
(1). Remove Battery Box CY-2562/ PRC-25 from the receiver-transmitter case.
(2) Remove the receiver-transmitter case from the receiver-transmitter.
(3) Connect the battery cable between Battery, Dry BA-386/PRC-25 (that is known to be good) and the battery plug on the receiver-transmitter.
(4) Turn on the test equipment and allow a 5-minute warmup period.
Caution: Do not place the re-ceiver-transmitter in a transmit condition with a wattmeter connected or an antenna installed.
Waring: The power amplifier plate voltage is +150 volts dc. Take all necessary precautions to protect personnel and test equipment.
71. Isolating Trouble in Module A1
(fig. 26 and 53)
a. Preparation.
(1) Prepare the following equipment:
(a) Multimeter ME-26B/U.
(b) Handset $\mathrm{H}-138 / \mathrm{U}$.
(2) Connect the handset to either AUDIO connector.
b. Performance Test.
(1) Press the handset push-to-talk switch.
(2) Set the ME-26 B/U to the 300-volt, dc range. Normal indication at J3 is +125 volts; normal indication at J 2 is -45 volts dc.
c. Faulty Part Isolation.

Note: Make all measurements with respect to ground unless otherwise specified.
(1) Measure the dc resistances at the points listed below and compare them with the normal resistances.

Point ofmeasurement	Meter indications (ohms)	
	Negative lead grounded	Positive lead ground ed
Q1 base -----------	1000	1.2
Q1 emitter to J1 pin C	8	100
Q1 collector -------	0	0
Q2 base -----------	1000	1.2
Q2 emitter to J1 pin C	8	100
Q2 collector	0	0
CR1-A1CR4 junction	470K	50
CR3-A1CR2 junction	1 meg	40
J2-----------------	1.5 meg	1.5 meg
J3 -----------------	1.5 meg	1.5 meg

(2) After replacing a faulty part, repeat the procedures given in b above.
72. Isolating Trouble in Module A2
(fig. 15 and 54)
a. Preparation.
(1) Prepare the following equipment:
(a) Signal Generator AN/URM-48.
(b) Frequency Meter AN/USM-26.
(c) Dummy antenna (fig. 41).
(d) Adapter UG-274B/U.
(e) Rf Millivoltmeter 411A.
(2) Connect a Cord CG-530/U (part of the AN/USM-26) between ANT connector J 2 on the receiver-transmitter and one end of the dummy antenna.
(3) Connect the output of the AN/URM48 to a male connector of the UG274B/U.
(4) Connect the AN/USM-26 to the other male connector of the UG274B/U.
(5) Connect the female connector of

UG-274B/U to the connector o n the other end of the dummy antenna.
(6) Set the AN/URM-48 frequency to $30,000 \mathrm{mc}$ as indicated on the AN/ USM-26. Adjust the deviation for $\pm 10 \mathrm{kc}$ at $1,000 \mathrm{cps}$.
(7) Set the receiver-transmitter front panel controls as follows:
(a) BAND switch at 30-52.
(b) Tuning knobs at 30.00 mc .
(c) Function switch at ON.
b. Bandwidth Test.
(1) Connect the 411A between pins 1 and 4 of A2J 1.
(2) Adjust the output of the AN/URM48 for a 25 -millivolt indication on the 411A.
(3) Disconnect the 411A from pins 1 and 4 of A2J 1 and connect it between pins 2 and 3 of A2J 1. The 411 A should indicate 4.5 db less than the indication not ed in (2) above. (This value, -4.5 db , is the input-to-output voltage ratio.)
(4) Adjust the AN/URM-48 level to obtain a $0-\mathrm{db}$ indication on the 411A.
(5) Increase the AN/URM-48 frequency until the 411A indicates a 3-db decrease. Record this frequency.
(6) Decrease the AN/URM-48 frequency to obtain a $0-\mathrm{db}$ indication on the 411A.
(7) Further decrease the AN/URM-48 frequency until the 411A indicates a 3-db decrease. Record this frequency.
(8) Return the AN/URM-48 frequency to obtain a $0-\mathrm{db}$ indication on the 411A.
(9) Compute the difference between the frequencies recorded in (5) and (7) above. The freqpency difference is the 3-db bandwidth, which should be 400 kc .
(10) Adjust the AN/URM-48 frequency to 52.950 mc as indicated by the AN/USM-26.
(11) Repeat (1) through (9) above. The input-to-output voltage ratio noted in (3) should be -3.0 db ; the $3-\mathrm{db}$ bandwidth computed in the

TM5820-398-35-52

Figure 53. Module Al parts location.
procedure given in (9) above should be $1,100 \mathrm{kc}$.
(12) Change the receiver-transmitter BAND switch to 53-75.
(13) Adjust the AN/URM-48 frequency to 53.000 mc as indicated by the AN/USM-26.
(14) Repeat the procedures given in (1) through (9) above. The input-tooutput voltage ratio noted in (3) above should be +1 db ; the $3-\mathrm{db}$ bandwidth computed in the procedure given in (9) above should be 3,300 kc.
(15) Adjust the AN/URM-48 frequency to 75.950 mc as indicated by the AN/USM-26.
(16) Repeat the procedures given in (1) through (9) above. The input-tooutput voltage ratio noted in (3) above should be -0.5 db ; the $3-\mathrm{db}$ bandwidth computed in the procedure given in (9) above should be 15,000 kc.
(17) If the bandwidth or the input-tooutput voltage ratio does not meet the given standards, proceed to c below.
c. Faulty Parts Isolation.
(1) Adjust the AN/URM-48 for a 25millivolt rf signal at the frequencies indicated in the chart below and measure the voltages at the switch terminals listed. Compare them with the nor ma 1 signals listed.
Note Measure all voltages to ground.

Point of measurement	Frequency input (mc)	Millivolts (rms)
S1D-2	30	23.5
S1A-2	30	135.0
S1C-2	30	140.0
S1D-2	53	26.0
S1A-2	53	70.0
S1C-2	53	42.0

(2) After replacing a faulty part, perform the alignment procedures given in d and e below and then repeat the procedures given in a and b above.
d. Preparation for Alignment. Set the receiver-transmitter front panel controls as follows:
(1) BAND switch at 30-52.
(2) Tuning knobs for 30.00 mc .
(3) Function switch at ON.
e. Alignnment Procedures.
(1) Connect the 411A between pins 1 and 4 of $A 21$.
(2) Adjust the output of the AN/URM48 for 30.00 mc and a 25 -millivolt indication on the 411A.
(3) Disconnect the 411A from pins 1 and 4 of A2J 1 and connect it between pins 2 and 3 of A2J 1.
(4) Tune transformer T1 for a peak voltage indication on the 411A.
(5) Set the receiver-transmitter tuning knobs at 52.95 mc , and adjust the AN/URM-48 to 52.95 mc .
(6) Tune capacitor C1 for a peak voltage indication on the 411A.
(7) Repeat the procedures given in (1) through (6) above until the 411A indication for 30.00 mc and 52.95 mc can no longer be increased by tuning.
(8) Set the receiver-transmitter front panel controls as follows:
(a) BAND switch at 53-75.
(b) Tuning knobs at 53.00 mc .
(9) Repeat the procedures given (1), (2), and (3) above, except change the frequency noted in (2) above to 52.95 mc .
(10) Tune transformer T2 for a peak voltage indication on the 411A.
(11) Set the receiver-transmitter tuning knobs at 75.95 mc , and adjust the AN/URM-48 frequency to 75.95 mc .
(12) Tune capacitor C2 for a peak voltage indication on the 411A.
(13) Repeat the procedures given in (9) through (12) above until the 411A indication for 53.00 mc and 75.95 mc cannot be increased by tuning.
73. Isolating Trouble Within Modules A3 and A4
Because modules A3 and A4 are similar, their maintenance procedures are similar. Refer to figures 1 and 2 for schematic

TMSE20-39e-35-33

Figure 54. Module A2 parts location.
diagrams and to figures 55 and 56 for test points and parts location.
a. Preparation.
(1) Prepare the following equipment:
(a) Signal Generator AN/URM-48.
(b) Frequency Meter AN/USM-26.
(c) Rf Millivoltmeter 411A.
(d) Adapter UG-274B/U.
(e) Multimeter ME-26B/U.
(2) Connect the AN/URM-48 output to a male connector of the UG-274B/ u.
(3) Connect the AN/USM-26 to the other male connector of the UG274B/U.
(4) Connect the female end of the UG274B/U to the receiver-transrnitter ANT connector.
(5) Set the AN/URM-48 frequency to 30.00 mc ; set the deviation to 10 kc at $1,000 \mathrm{cps}$.
b. Gain and Bandwidth Test.
(1) Connect the 411A to J 2 of the module under test.
(2) Adjust the AN/URM-48 frequency to 30.00 mc and the level to 10 millivolts as indicated by the 411A.
(3) Disconnect the 411A from J 2 and connect it between pins 3 and 4 of J 1 in the module under test. Note the output level.
(4) Compute the gain by subtracting the input db level noted in (2) above from the output db level noted in (3) above. Normal gain is 16 db or greater.
(5) Reconnect the 411A to test point J 2 of the m o du 1 e under test.
(6) Increase the AN/URM-48 level until the 411A indicates 20 millivolts.
(7) Repeat the procedure given in (3) above.
(8) Decrease the AN/URM-48 frequency until the output level indicated by the 411A is at the level
noted in (3) above. Record the frequency.
(9) Increase the AN/URM-48 frequency until the output level indicated by the 411A is again at the level noted in (3) above. Record the frequency.
(10) Compute the difference between the frequencies noted in (8) and (9) above. The frequency difference is the 6 -db bandwidth, which should be 700 kc .
(11) Repeat the procedures given in (1) through (10) above for A3 at 52.95 $\mathrm{mc}, 53.00 \mathrm{mc}$, and 75.95 mc . The gain noted in (4) above should be $14 \mathrm{db}, 12 \mathrm{db}$, and 12 db respectively. The bandwidth computed in the procedures given in (10) above should be $2,000 \mathrm{kc}, 2,500 \mathrm{kc}$, and 6,700 kc, respectively.
(12) Repeat the procedures given in (1) through (10) above for A4 at 30.00 $\mathrm{mc}, 52.95 \mathrm{mc}, 53.00 \mathrm{mc}$, and 75.95 mc. The gain noted in (4) above should be $13.5 \mathrm{db}, 19 \mathrm{db}, 15 \mathrm{db}$, and 13.5 db respectively. The bandwidth computed in (10) above should be $700 \mathrm{kc}, 1,200 \mathrm{kc}, 1,600 \mathrm{kc}$, and 3,100 kc respectively.
(13) If either the gain or bandwidth tests or both do not meet the outlined standards of the procedure, proceed to d and e below.
c. Faulty Parts Isolation.
(1) Apply a 30.00 mc signal to the receiver-transmitter ANT connector, adjusted to 10 millivolts at test point J 2 of A3. Measure the voltages at the points outlined below. Compare them with the normal signal and dc voltages listed.
Note Measure all voltages to ground.
(a) Signal voltage chart.

Point of measurement	Millivolts (rms)	
	A3	A4
Q1 collector ---	125	580
Q1 base -------	12	77
Q1 emitter -----	15	94
J1-1 ----------	10	57
J1-4 ----------	57	340

(b) Dc voltage chart.

Point of measurement	Volts (dc)	
	A3	A4
C4-L1 junction --	10	10
Q1 collector --m	10	10
Q1 base --------	1.3	1.3
Q1 emitter ------	0.6	0.6
J1-1 -----------	0.0	0.0
J1-4 -----------	0.0	0.0

(2) After the replacement of a faulty part, perform the alignment pro: cedure given in d and e below and repeat the procedures given in a and b above.
d. Preparation for Alignment.
(1) Set the receiver-tansmitter front panel controls as follows:
(a) Set the BAND switch and the tuning knobs at the AN/URM-48 frequency.
(b) Set the function switch at ON .
(c) Remove A5.
(2) Connect a shorting jumper between pins E and H of J 9 (receptacle for A5).
e. Alignment Procedures.
(1) Adjust the AN/URM-48 output frequency to 30.00 mc . Connect the 411A between pin B of J 9 and ground.
(2) Tune transformer T2 for a peak indication on the 411A.
(3) Change the AN/URM-48 frequency to 52.00 mc .
(4) Tune capacitor C7 for a peak indication on the 411A.
(5) Repeat the procedures give n in (1) through (4) above until the 411A indication for 30.00 mc and 52.00 mc cannot be increased by tuning.
(6) Adjust the AN/URM-48 and the re-ceiver-transmitter to 53.00 mc .
(7) Tune transformer T3 for a peak indication on the 411A.
(8) Change the AN/URM-48 and the receiver-transmitter frequency to 75.95 mc
(9) Tune capacitor C9 for a peak indication on the 411A.
(10) Repeat the procedures given in (6) through (9) above until the 411A
indication cannot be increased by tuning.
(11) Remove the shorting jumper from pins E and H of J 9 .
(12) Replace A5.
74. Isolating Trouble in Module AS
(fig. 3 and 57)
a. Preparation.
(1) Prepare the following equipment:
(a) Signal Generator AN/URM-48.
(b) Frequency Meter AN/USM-26.
(c) Rf Millivoltmeter 411A.
(d) Adapter UG-274B/U.
(e) Multimeter ME-26B/U.
(2) Connect the AN/URM-48 output to a male connector of the UG-274B/ U.
(3) Connect the AN/USM-26 to the other male connector of the UG274B/U.
(4) Connect the female connector of the UG-274B/U to the receiver transmitter ANT connector.
(5) Adjust the AN/URM-48 frequency for 30.00 mc , with a deviation of 10 kc at $1,000 \mathrm{cps}$.
b. Gain and Bandwidth Test.
(1) Connect the 411A between pins B and A of A5J 1.
(2) Adjust the AN/URM-48 level to obtain a 50-millivolt indication on the 411A. (Note the db indication.)
(3) Disconnect the 411A from pins A and B; connect it between pins C and D of $A 5$ 1. Note the db indication.
(4) Compute the gain by subtracting the db level noted in (2) above from the db level noted in (3). Normal gain is 2.5 db .
(5) Connect the 411A between A21J 3 and chassis ground and note the db level.
(6) Repeat the procedures given in (1) and (2) above, except adjust the AN/URM-48 level to obtain a 100millivolt indication on the 411A.
(7) Disconnect the 411A from pins A and B of A5J 1 and connect it between A21J 3 and chassis ground.
(8) Decrease the AN/URM-48 frequency until the level indicated by the 411A is again at the level noted in (5) above. Record the frequency.

TM5820-398-35-54

Figure 55. Module A 3 parts location.

TM5820-398-35-55

Figure 56. Modulead parts location.
(9) Increase the AN/URM-48 frequency until the level indicated by the 411A is again at the level noted in (5) above. Record the frequency.
(10) Compute the difference between the frequencies noted in (8) and (9) above. The frequency difference is the 6 -db bandwidth, which should be at least 32 kc .
(11) Perform the procedures given in (1) through (10) above for 75.95 mc , except that normal gain in (4) above is 0 db .
(12) If either the gain or bandwidth tests or both do not meet the outlined standards of the procedure, proceed to e and f below.
c. Faulty Parts Isolation.
(1) Apply a $30.00-\mathrm{mc}$, $10-\mathrm{millivolt}$ signal to the module under test. Measure the voltages at the points outlined below. Compare them with the normal signal and dc voltages listed.
Note Measure all voltages to ground.
(a) Signal voltage chart.

Point of measurement	Millivolts (rms)
	100
	73
	10
	97
	360
	8.6
Q2 emitter --------------------------10	1.7

(b) Dc voltage chart.

Point of measurement	Volts (dc)
	10
	9.8
Q1 base ----------------------------	0.65
	0.0
Q2 base ----------------------------------	8.4
	8.8
Q2 collector -------------------------	0.0

(2) After the replacement of a faulty part, perform the alignment procedure given in d and e below and repeat the procedures given in a and b above.
d. Preparation for Alignment. Set the
receiver-transmitter front panel controls as follows:
(1) Turn the BAND switch to $30-52$.
(2) Turn the tuning knobs to 30.00 mc .
(3) Turn the function switch to ON.
e. Alignment Procedure.
(1) Adjust the AN/URM-48 frequency to 30.000 mc and adjust the output for 10 millivolts between pins A and B of A5 1.
(2) Connect the 411A between A21J 3 and chassis ground.
(3) Adjust A5T2 for a peak indication on the 411A.
(4) Disconnect all connections.
(5) Replace the module cover.
75. Isolating Trouble in Module A6
(fig. 13 and 58)
a. Preparation.
(1) Prepare the following equipment:
(a) Frequency Meter AN/USM-26.
(b) Signal Generator AN/URM-48.
(c) Rf Millivoltmeter 411A.
(d) Handset $\mathrm{H}-138 / \mathrm{U}$.
(g) Rf Wattmeter AN/URM-43A. Multimeter ME-26B/U.

TM5820. 398.35 .56

Figure 57. Module A6, parts location.
(2) Connect the $\mathrm{H}-138 / \mathrm{U}$ to an AUDIO connector.
(3) Connect the AN/URM-43A to ANT connector J 2.
(4) Place the front panel controls of the Receiver-Transmitter as follows:
(a) BAND switch at 30-52.
(b) Tuning knobs to 30.00 mc .
(c) Function switch at ON.
(5) Remove module A7.
(6) Connect the output of the AN/URM48 to the input of AN/USM-26. Adjust AN/URM-48 for 30.000 mc , as indicated by the AN/USM-26.
(7) Press the push-to-talk switch on the $\mathrm{H}-138 / \mathrm{U}$.
b. Gain and Bandwidth Test.
(1) Connect the output of the AN/URM48 between pins 1 and 2 of A6J 1.
(2) Connect the 411A across the AN/ URM-48 output. Adjust the AN/ URM-48 for a 100-millivolt indication on the 411A. (Note the db indication.)
(3) Disconnect the 411A from the AN/ URM-48 and connect it between pins 1 and 2 of S1J 1 . The 411A should indicate 22 db more than the indication obtained in the procedure given in (2) above. (This value, +22 db , is the stage gain.)
(4) Adjust the AN/URM-48 level to obtain a $0-\mathrm{db}$ indication on the 411A. Increase the AN/URM-48 frequency until the 411A indicates a 3-db decrease.
(6) Connect the AN/URM-48 to the AN/ USM-26 and record the frequency. Decrease the frequency of the AN/ URM-48 to 30.00 mc .
(7) Connect the AN/URM-48 between pins 1 and 2 of A6J 1.
(8) Decrease the frequency of the AN/ URM-48 until the 411A indicates a 3-db decrease.
(9) Connect the AN/URM-48 to the AN/ USM-26 and record the frequency. Increase the AN/URM-48 frequency to 30.00 mc .
(10) Compute the difference between the frequencies recorded in the procedure given in (6) and (9) above. The
frequency difference is the $3-\mathrm{db}$ bandwidth, which should be 1,200 kc.
(11) Adjust the AN/URM-48 frequency to 52.95 mc as indicated by the AN/ USM-26.
(12) Repeat the procedure given in (1) through (10) above; return the AN/ URM-48 to 52.95 mc noted in (6) and (9) above.
(13) The gain noted in (3) above should be +21 db ; the $3-\mathrm{db}$ bandwidth computed in the procedure given in (10) above should be 900 kc .
(14) Change the receiver-transmitter BAND switch to 53-75.
(15) Adjust the AN/URM-48 frequency to 53.00 mc as indicated by the AN/ USM-26.
(16) Repeat the procedure given in (1) through (10) above; return the AN/ URM-48 to 53.00 mc instead of the indication given in (6) and (9) above.
(17) The gain noted in (3) above should be +18 db ; the $3-\mathrm{db}$ bandwidth computed in the procedure given in (10) above should be 1,300 kc.
(18) Adjust the AN/URM-48 frequency to 75.95 mc as indicated by the AN/ USM-26 .
(19) Repeat the procedure given in (1) through (10) above; return the AN/ URM-48 to 75.95 mc instead of the indication given in (6) and (9) above.
(20) The gain noted in (3) above should be +12 db ; the $3-\mathrm{db}$ bandwidth computed in the procedure given in (10) above should be 4,000 kc.
(21) Replace module A7.
(22) If the gain and bandwidth do not meet the outlined standards of the procedure, proceed to c below.
c. Faulty Parts Isolation.
(1) Remove module A7. Connect the H138/U to an AUDIO connector and press the push-to-talk switch. Apply a $30.00 \mathrm{mc}, 100$-millivolt signal between pins 1 and 2 of A6J 1. Measure the voltages at the points outlined below. Compare them with the normal signal and dc voltages listed.
Note Measure all voltages to ground.
(a) Signal voltage chart.

Point of measurement	Voltage (rms)
	0. 100
	0.054
	1.3
Q1 base -----------------------	0.044
(b) Dc voltage chart.	
Point of measurement	Volts (dc)
	-45
Q1 emitter ----------------------	-39
Q1 base ---------------------------	-38
Q1 collector --------------------	0

(2) After the replacement of a faulty part, perform the alignment procedure given in d and e below and repeat the procedures given in a and b above.
d. Preparation fbr Alignment.
(1) Set the receiver-transmitter front panel controls as follows:
(a) BAND switch at 30-52.
(b) Function switch at ON.
(2) Connect the AN/URM-43A to ANT connector J 2.
(3) Remove module A7.
(4) Connect the AN/URM-48 between pins 1 and 2 of A6J 1.
e. Alignment Procedure.
(1) Set the receiver-transmitter tuning knobs for 30.00 mc .
(2) Connect the 411A across the output of the AN/URM-48.
(3) Connect the $\mathrm{H}-138 / \mathrm{U}$ to an AUDIO and press the push-to-talk switch.
(4) Adjust the AN/URM-48 frequency to 30.00 mc and the level to 100 millivolts, as indicated by the 411A.
(5) Disconnect the 411A from the AN/ URM-48 and connect it between pins 1 and 2 of S1J 1.
(6) Adjust T2 for a peak indication on the 411A,
(7) Change the AN/URM-48 frequency and the receiver-transmitter tuning knobs to 52.95 mc .
(8) Adjust C6 for a peak indication on the 411A.
(9) Repeat the procedures given in (1) through (8) above until the 411A indication cannot be increased by tuning.
(Io) Set the BAND switch on the re ceiver-transmitter at 53-75, and the tuning knobs at 53.00 mc .
(11) Disconnect the 411A from J 1S1 and connect it across the AN/URM-48 output.
(12) Adjust the AN/URM-48 frequency to 53.00 mc and the level to 100 millivolts, as indicated by the 411A.
(13) Disconnect the 411A from the AN/ URM-48 and connect it between pins 1 and 2 of S1J 1.
(14) Adjust T3 for a peak indication on the 411A.
(15) Change the AN/URM-48 frequency and the RT-505/PRC-25 tuning knobs to 75.95 mc .
(16) Adjust C8 for a peak indication on the 411A.
(17) Repeat (10) through (16) above until the 411A indication cannot be increased by tuning.
(18) Replace A7.
76. Isolating Trouble in Module A7
(fig. 13 and 59)
a. Preparation
(1) Prepare the following equipment:
(a) Frequency Meter AN/USM-26.
(b) Signal Generator AN/URM-48.
(c) Rf Millivoltmeter 411A.
(d) Handset $\mathrm{H}-138 / \mathrm{U}$.
(e) Rf Wattmeter AN/URM-43A.
(f) Multimeter ME-26B/U.
(2) Connect the $\mathrm{H}-138 / \mathrm{U}$ to an AUDIO connector.
(3) Connect the AN/URM-43A to ANT connector J 2.
(4) Set the front panel controls of the receiver-transmitter as follows:
(a) BAND switch at 30-52.
(b) Tuning knobs at 30.00 mc .
(c) Function switch at ON.
(5) Remove module A8.
(6) Connect the AN/URM-48 output to the input of the AN/USM-26. Adjust the AN/URM-48 for 30.000 mc , as indicated by the AN/USM-26.
b. Gain and Bandwidth Test.
(1) Connect the output of AN/URM-48 between pins 1 and 2 of J 1 .

TM 5820-398-35-57

Figure 58. Module A6, parts location.
(2) Connect the 411A across the AN/ URM-48 output. Press the push-totalk switch. Adjust the AN/URM-48 for a 100-millivolt indication on the 411A. (Note the db indication.)
(3) Disconnect the 411A from the AN/ URM-48 and connect it between pins 3 and 4 of J 1 . The 411A should indicate 16 db more than the value indicated in (2) above. (This value, +16 db , is the stage gain.)
(4) Adjust the AN/URM-48 level to obtain a $0-\mathrm{db}$ indication on the 411A.
(5) Increase the AN/URM-48 frequency until the 411A indicates a 3-db decrease.
(6) Connect the AN/URM-48 to the AN/ USM-26 and record the frequency. Decrease the frequency of the AN/ URM-48 to 30.00 mc .
(7) Connect the AN/URM-48 between pins 1 and 2 of J 1.
(8) Decrease the frequency of the AN/ URM-48 until the 411A indicates a 3-db decrease.
(9) Connect the AN/URM-48 to the AN/ USM-26 and record the frequency. Increase the AN/URM-48 frequency to 30.00 mc .
(Io) Compute the difference between the frequencies recorded in (6) and (9) above. The frequency difference is the 3 -db bandwidth, which should be $1,300 \mathrm{kc}$.
(11) Adjust the AN/URM-48 frequency to 52.95 mc as indicated by the AN/ USM-26.
(12) Repeat (1) through (10) above; return the AN/URM-48 to 52.95 mc instead of the indication given in ((6) and (9) above).
(13) The gain noted in (3) above should be +15 db ; the $3-\mathrm{db}$ bandwidth computed in the procedure given in (10) above should be 1,600 kc.
(14) Change the receiver-transmitter BAND switch to 53-75.
(15) Adjust the AN/URM-48 frequency to 53.00 mc as indicatedbythe AN/ USM-26.
(16) Repeat the procedures given in (1) through (10) above, returning the

AN/URM-48 to 53.00 mc instead of the indication given in ((6) and (9) above).
(17) The gain noted in (3) above should be +9.5 db ; the $3-\mathrm{db}$ bandwidth computed in (10) above should be 1,400 kc.
(18) Adjust the AN/URM-48 frequency to 75.95 mc as indicated by the AN/ USM-26. Set the receiver-transmitter tuning knobs for the same frequency.
(19) Repeat the procedures given in (1) through (10) above; return the AN/ URM-48 to 75.95 mc instead of the indication given in ((6) and (9) above).
(20) The gain noted in (3) above should be +10 db ; the $3-\mathrm{db}$ bandwidth computed in (10) above should be 2,800 kc.
(21) Replace module A8.
(22) If the gain and bandwidth do not meet the standards of the procedure, proceed to c below.
c. Faulty Parts Isolation.
(1) Remove module A8. Connect the H 138/U to an AUDIO connector. Apply a $30.00 \mathrm{mc}, 100-\mathrm{millivolt}$ signal between pins 1 and 2 of A7J 1 . Press the push-to-talk switch. Measure the voltages at the points outlined in the charts in a and b below. Compare them with the normal signal and dc voltages listed. Note Measure all voltages to ground.
(a) Signal voltage chart.

(b) Dc voltage chart.

Point of measurement	Volts (dc)
	-45
	-37
Q1 base -----------------------------	-36
	0

(2) After the replacement of a faulty part, perform the alignment procedures given in d and e below, and repeat the procedures in a and b above.
d. Preparation fix Alignment.
(1) Set the receiver-transmitter front panel controls as follows:
(a) BAND switch at 30-52.
(b) Function switch at ON .
(2) Connect the AN/URM-43A to ANT connector J 2.
(3) Connect the $\mathrm{H}-138 / \mathrm{U}$ to an AUDIO connector.
(4) Remove module A8.
(5) Connect the AN/URM-48 between pins 1 and 2 of A7J 1.
e. Alignment Procedure.
(1) Set the receiver-transmitter tuning knobs for 30.00 mc .
(2) Connect the 411A across the output of the AN/URM-48. Press the push-to-talk switch.
(3) Adjust the AN/URM-48 frequency to 30.00 mc and level to 100 milli volts, as indicated by the 411A.
(4) Disconnect the 411A from the AN/ URM-48 and connect between pins 3 and 4 of J 1.
(5) Adjust T3 for a peak indication on the 411A.
(6) Change the AN/URM-48 frequency and the receiver-transmitter tuning knobs to 52.95 mc .
(7) Adjust C9 for a peak indication on the 411A.
(8) Repeat the procedures given in (1) through (7) above until the 411A indication cannot be increased by tuning.
(9) Set the BAND switch on the re-ceiver-transmitter to 53-75, and the tuning knobs to 53.00 mc .
(10) Disconnect the 411A from J 1 and connect it across the AN/URM-48 output.
(11) Adjust the AN/URM-48 frequency to 53.00 mc and the level to 100 millivolts, as indicated by the 411A.
(12) Disconnect the 411A from the AN/ URM-48 and connect it between pins 3 and 4 of A7J 1.
(13) Adjust T2 for a peak indication on the 411A.
(14) Change the AN/URM-48 frequency and the receiver-transmitter tuning knobs for 75.95 mc .
(15) Adjust C6 for a peak indication on the 411A.
(16) Repeat the prc cedures given in (9) through (15) above until the 411A indication cannot be increased by tuning.
(17) Replace A8.
77. Isolating Trouble in Module A8
(fig. 11 and 60)
a. Preparation.
(1) Prepare the following equipment:
(a) Frequency Meter AN/USM-26.
(b) Signal Generator AN/URM-48.
(c) Rf Millivoltmeter 411A.
(d) Handset $\mathrm{H}-138 / \mathrm{U}$.
(e) Rf Wattmeter AN/URM-43A.
(f) Multimeter ME-26B/U.
(2) Connect the $\mathrm{H}-138 / \mathrm{U}$ to an AUDIO connector.
(3) Connect AN/URM-43A to ANT connector J 2.
(4) Set the front panel controls of the receiver-transmitter as follows:
(a) BAND switch at 30-52.
(b) Tuning knobs for 30.00 mc .
(c) Function switch at ON.
(5) Remove module A9.
(6) Connect the AN/URM-48 output to the input of the AN/USM-26. Adjust AN/URM-48 for 30.000 mc , as indicated by the AN/USM-26.
b. Gain and Bandwidth Test.
(1) Connect the output of the AN/URM48 between pins 1 and 2 of A8J 1.
(2) Connect the 411A across the AN/ URM-48 output. Press the push-totalk switch. Adjust the AN/URM-48 for a 100-millivolt indication on the 411A. Note the db indication.
(3) Disconnect the 411A from the AN/ URM-48 and connect it between pins 3 and 4 of A8J 1. The 411A should indicate 19 db more than the value indicated in (2) above. (This value, +19 db , is the stage gain.)
(4) Adjust the AN/URM-48 level to ob-

Figure 59. Module A7, parts location.
tain a O-db indication on the 411A.
(5) Increase the AN/URM-48 frequency until the 411A indicates a 3-db decrease.
(6) Connect the AN/URM-48to the AN/ USM-26 and record the frequency. Decrease the AN/URM-48 to 30.00 mc .
(7) Connect the AN/URM-48 between pins 1 and 2 of A8J 1.
(8) Decrease frequency of the AN/ URM-48 until the 411A indicates a 3-db decrease.
(9) Connect the AN/URM-48 to the AN/ USM-26 and record the frequency. Increase the AN/URM-48 frequency to 30.00 mc .
(Io) Compute the difference between the frequencies recorded in (6) and (9) above. The frequency difference is the $3-\mathrm{db}$ bandwidth, which should be 600 kc .
(11) Adjust the AN/URM-48 frequency to 52.95 mc as indicated by the AN/ USM-26.
(12) Repeat the procedures given in (1) through (10) above; return the AN/ URM-48 to 52.95 mc instead of the
indication given in (6) and (9) above.
(13) The gain noted in (3) should be +20 db ; the $3-\mathrm{db}$ bandwidth computed in (10) above should be $1,100 \mathrm{kc}$.
(14) Change the receiver-transmitter BAND switch to 53-75.
(15) Adjust AN/URM-48 frequency to 53.00 mc as indicated by the AN/ USM-26.
(16) Repeat (1) through (10) above; return the AN/URM-48 to 53.00 mc instead of the indication given in (6) and (9) above.
(17) The gain noted in (3) above should be +18 db ; the $3-\mathrm{db}$ bandwidth computed in (10) above shouldbe 500 kc .
(18) Adjust the AN/URM-48 frequency to 75.95 mc as indicated by the AN/ USM-26.
(19) Repeat the procedures given in (1) through (10) above, returning the AN/URM-48 to 75.95 mc instead of the indication given in (6) and (9) above.
(20) The gain noted in (3) above should be +20 db ; the $3-\mathrm{db}$ bandwidth computed in (10) should be 1,500 kc.
(21) Replace module A9.
(22) If the gain and bandwidth do not meet the standards of the procedure, proceed to c below.
c. Faulty Parts Isolation.
(1) Remove module A9. Connect the H138/U to an AUDIO connector. Apply a 30.00 mc , 100 -millivolt signal between pins 1 and 2 of A8J 1. Press the push-to-talk switch. Measure the voltages at the points given in the charts in (a) and (b) below. Compare them with the normal signal and dc voltages listed.
Note: Measure all voltages to ground.
(a) Signal voltage chart.

Point of measurement	Millivolts (rms)
	100
Q1 base --w----------------------	180
	980
	720

(b) Dc voltage chart.

Point of measurement	Volts (dc)
	10
	7.2
Q1 emitter ----------------------	7.3

(2) After the replacement of a faulty part, perform the alignment procedures outlined in d and e below and repeat a and b above.
d. Preparation for Alignment.
(1) Set the receiver-transmitter front panel controls as follows:
(a) BAND switch at 30-52.
(b) Function switch at ON.
(2) Connect the AN/URM-43A to ANT connector J 2.
(3) Connect the H-138/U to an AUDIO connector.
(4) Remove module A9.
(5) Connect the AN/URM-48, between pins 1 and 2 of A8J 1.
e. Alignment Procedure
(1) Set the receiver-transmitter tuning knobs to 30.00 mc .
(2) Connect the 411A across the output of the AN/URM-48. Press the push-to-talk switch.
(3) Adjust the AN/URM-48 frequency
to 30.00 mc and the level to 100 millivolts, as indicated by the 411A.
(4) Disconnect the 411A from the AN/ URM-48 and connect it between pins 3 and 4 of J 1.
(5) Adjust T2 for a peak indication on the 411A.
(6) Change the AN/URM-48 frequency and the receiver-transmitter tuning knobs to 52.95 mc .
(7) Adjust C6 for a peak indication on the 411A.
(8) Repeat the procedures given in (1) through (7) above until the 411A indication cannot be increased by tuning.
(9) Set the BAND s witch on the re-ceiver-transmitter at 53-75, and the tuning knobs for 53.00 mc .
(10) Discomect the 411A from pins 3 and 4 of A8J 1 and connect it across the AN/URM-48 output.
(11) Adjust the AN/URM-48 frequency to 53.00 mc and the level to 100 millivolts, as indicated by the 411A.
(12) Disconnect the 411A from the AN/ URM-48 and connect it between pins 3 and 4 of A8J 1.
(13) Adjust T3 for a peak indication on the 411A.
(14) Change the AN/URM-48 frequency and the receiver-transmitter tuning knobs to 75.95 mc .
(15) Adjust C9 for a peak indication on the 411A.
(16) Repeat the procedures given in (9) through (15) above until the 411A indication cannot be increased by tuning.
(17) Replace A9.
78. Isolating Trouble in Module A9
(fig. 10 and 61)
a. Preparation.
(1) Prepare the following equipment:
(a) Frequency Meter AN/USM-26.
(b) RF Millivoltmeter 411A.
(c) Multimeter ME-26B/U.
(d) Hand set $\mathrm{H}-138 / \mathrm{U}$.
(2) Connect the AN/USM-26 input to test point A14J 2.

TM5820-398-35-59

Figure 60. Module A8, parts location.
(3) Connect the ME-26B/U to A9J 3.
(4) Connect the 411A to A9J 4.
(5) Set the receiver-transmitter front panel controls as follows:
(a) BAND switch at 30-52.
(b) Tuning knobs for 30.50 mc .
(c) Function switch at ON.
b. Vfo Frequency Test.
(1) While rotating the mc tuning knob in 1 -mc increments from 30.50 to 52.50 mc , observe the indications on the ME-26B/U, the AN/USM-26, and the 411A.
(2) A normal apc voltage indicated throughout the tuning range by the ME-26B/U is +3.6 volts dc ± 0.5.
(3) Normal frequency indications obtained on the AN/USM-26 when tuning through the $30.50-$ to $52.50-\mathrm{mc}$ range are $42.000 \mathrm{mc}+2 \mathrm{kc}$ to 64.000 $\mathrm{mc} \pm 2 \mathrm{kc}$. Each point of observation should differ by $1 \mathrm{mc} \pm 25 \mathrm{cps}$.
(4) A normal vfo rf output level indicated throughout the tuning range by the 411 A is 0.40 volt $\pm 1.5 \mathrm{db}$.
(5) Disconnect the 411A from A9J 4 and connect it to A5J 2 . Check the injection level into A5 while rotating the
mc tuning knob through the 30.50 to 52.50 mc tuning range. A normal rf level indicated by the 411A is 0.060 volt $\pm 3 \mathrm{db}$.
(6) Disconnect the 411A from A5J 2 and connect it to A14J 2. Check the injection level into A14 while rotating the mc tuning knob through the 30.50 to 52.50 mc tuning range. A normal rf level indicated by the 411 A is 0.40 volt +1.5 db .
(7) Disconnect the 411A from A14J 2 and connect it to A8J 2. Connect the H-138/U to AUDIO connector and press the push-to-talk switch. Check the injection level into A8 while rotating the mc tuning knob through the 30.50 to 52.50 mc tuning range. A normal indication on the 411 A is 1.3 volts $\pm 2 \mathrm{db}$.
(8) Remove module A14. Disconnect the 411A from A8J 2 and connect it to pin A of J 20 (receptacle for A14). Check the rf signal level while rotating the mc tuning knob through the 30.50 to 52.50 mc tuning range. A normal indication on the 411A is 0.60 volt $\pm 2 \mathrm{db}$.
(9) Disconnect the 411A from J 20. Replace A14. Connect the 411A to A9J 4.
(10) Set the receiver-transmitter BAND switch to 53-75.
(11) While rotating the receiver-transmitter mc tuning knob in 1 -mc increments from 53.50 to 75.50 mc , observe the indications on the ME26B/U and the 411A.
(12) The ME-26B/U indication should be the same as that in (2) above; the 411A indication should be the same as that in (4) above.
(13) If any of the indications obtained above are not normal, proceed to the alignment procedure given in c and d below.
c. Preparation for Alignment.
(1) Prepare the following equipment:
(a) Transistor Power Supply 721A.
(b) Frequency Meter AN/USM-26.
(c) Multimeter ME-26B/U.
(d) Rf Wattmeter AN/URM-43A.
(2) Connect the positive lead of the 721A to A9J 3. Connect the GRD lead to the receiver-transmitter chassis.
(3) Connect the AN/URM-43A to ANT connector J 2.
(4) Connect the ME-26B/U across the 721A output. Adjust the 721A until the ME-26B/U indicates exactly 3.6 volts dc.
(5) Connect the AN/USM-26 ,to A14J 2.
(6) Set the receiver-transmitter front panel controls as follows:
(a) BAND switch at 30-52.
(b) Mc and kc tuning knobs for 30.50 mc .
(c) Function switch at ON.
d. Alignment Procedure.
(1) Rotate the mc tuning knob to 31.50 mc. Adjust T1 until the AN/USM-26 indicates $43.000 \mathrm{mc}+25 \mathrm{kc}$.
(2) Rotate the mc tuning knob to 51.50 mc. Adjust C9 until AN/USM-26 indicates $63.000 \mathrm{mc}+25 \mathrm{kc}$.
(3) Repeat the procedure given in (1) and (2) above until no further adjustment is necessary.
(4) Reset the mc tuning knob to 31.50
mc (AN/USM-26 indicates 43.000 $\mathrm{mc}+25 \mathrm{kc}$).
(5) Adjust the 721A output voltage until the ME-26B/U indicates exactly +4.0 volts dc. Record the frequency indicated by the AN/USM-
(6) Adjust the 721A output voltage until the ME-26B/U indicates exactly +3.0 volts dc. Record the frequency indicated by the AN/USM-26.
(7) Subtract the indication obtained in (6) above from that obtained in (5) above. This value, which is the vfo sensitivity (kc/volt), at the lower end of the band, should be 300 kc ± 30.
(8) Reset the mc tuning knob to 51.50 mc and the 721A output (indicated by the ME-26B/U) to +3.6 volts dc. The AN/USM-26 should indicate $63.000 \mathrm{mc}+25 \mathrm{kc}$.
(9) Adjust the 721A output voltage until the ME-26B/U indicates exactly +4.0 volts dc. Record the frequency indicated by the AN/USM-26.
(10) Adjust the 721A output voltage until the ME-26B/U indicates exactly +3.0 volts dc. Record the frequency indicated by the AN/USM-26.
(11) Subtract the indication obtained in (10) above from that obtained in (9) above. This value, which is the vfo sensitivity at the upper end of the band, should be equal to the indication obtained in (7) above within $\pm 15 \mathrm{kc}$.
(12) Reset the 721A output voltage to exactly -3.6 volts dc as indicated by the ME-26B/U.
(13) If the indications obtained in the procedures given in (7) and (11) above are within limits, proceed to (17) below. If the indications are greater than $\pm 15 \mathrm{kc}$ apart, proceed to (14) below.
(14) If the frequency difference given in (11) above is less than that given in (7) above, adjust C8 clockwise until the vfo frequency is decreased 50 kc , as indicated by the AN/USM26. Adjust C9 counterclockwise until the vfo frequency is increased

50 kc , as indicated by the AN/USM26.
(15) If the frequency difference given in (11) above is greater than that given in (7) above, adjust C8 counterclockwise until the vfo frequency is increased by 50 kc , as indicated by the AN/USM-26. Adjust C9 clockwise until the vfo frequency is returned to its nominal value, 63.000 mc , as indicated by the AN/USM-26.
(16) Repeat the procedures given in (1) through (11) above. If necessary, repeat the procedure given in (14) or (15) above and the entire alignment procedure until the results obtained in the procedures given in (7) and (11) above are within the prescribed limits.
(17) Reduce the 721A output to zero and disconnect it from A9j 3. (Allow the ME-26B/U to remain connected to A9 3.)
(18) Press switches S2 and S3 (fig. 31) and note the apc closed-loop voltage as indicated by the ME-26B/U. A normal indication is +3.6 volts dc ± 0.2.
(19) Release S2 and S3. Rotate the mc tuning knob from 30.50 mc to 52.50 mc in 1-mc steps and record the apc voltage (indicated by the ME26B/U) at each step. The normal voltage deviation, relative to the indication obtained in the procedure given in (18) above, is approximately ± 0.5 volt.
(20) If the indications obtained above are not normal, proceed to e below.
(21) If the indications obtained above are normal, alignment procedures for A9 are completed.
e. Faulty Part Isolation.
(1) Remove modules A8 and A20.
(2) Apply an $11.5-\mathrm{mc}, 0.68$-voltsignal between pin 1 of A9J 1 and chassis wound.
(3) Use an ME-26B/U to measure dc voltages at the points listed in the chart below. Compare them with the typical voltages listed.

Note: Measure all voltages to ground.

Point of measurement	Volts (dc)
	7.5
Q1 collector --------m-----------*	0
	7.7
	6.0
	0
	6.0
	5.8
	0
	7.6

${ }^{\text {a }}$ For this measurement connect a jumper wire between pins 5 and 6 of connector J6 (receptacle for module A8) and press the push-to-talk switch.
(4) After the replacement of a faulty part, replace the module cover and perform the alignment procedures given in d above.
79. Isolating Trouble in Module A10 (fig. 19 and 62)
a. Preparation.
(1) Prepare the following equipment:
(a) Frequency Meter, AN/USM-26.
(b) Voltmeter, Meter ME-30A/U.
(c) Rf Millivoltmeter 411A.
(d) Handset H-138/U.
(e) Resistor, 470-ohm, 1-watt.
(f) Multimeter ME-26B/U.
(g) Rf Wattmeter AN/URM-43A.
(2) Set the receiver-transmitter front panel controls as follows:
(a) BAND switch at 30-52.
(b) Tuning knobs for 30.00 mc .
(c) Function switch at ON.
(3) Connect the AN/URM-43A to ANT connector J 2.
b. $100-\mathrm{KC}$ Interval Oscillator Test.
(1) Connect the AN/USM-26, in series with the 470 -ohm resistor, between test point A10J 2 and ground. The AN/USM-26 should indicate 46.850 mc .
(2) Connect the 411A between A10 2 and ground. The 411A should indicate 0.2 volt.
(3) Set the receiver-transmitter tuning knobs for 30.10 mc . The AN/ USM-26 should indicate 46.950 mc ; the 411A should indicate 0.2 volt.
(4) Set the tuning knobs for 30.20 mc . The AN/USM-26 should indicate

TM5820-39B-35-60

Figure 61. Module A9, parts location.
47.050; the 411A should indicate 0.2 volt.
(5) Set the tuning knobs for 30.30 mc . The AN/USM-26 should indicate 47.150 mc ; the 411A should indicate 0.2 volt.
(6) Set the tuning knobs for 30.40 me. The AN/USM-26 should indicate 47.250 mc ; the 411A should indicate 0.2 volt.
(7) Set the tuning knobs for $30.50 \mathrm{mc}_{\text {。 }}$ The AN/USM-26 should indicate 47.350 mc ; the 411A should indicate 0.2 volt.
(8) Set the tuning knobs for 30.60 mc . The AN/USM-26 should indicate 47.450 mc ; the 411A should indicate 0.2 volt.
(9) Set the tuning knobs for 30.70 mc . The AN/USM-26 should indicate 47.550 mc ; the 411A should indicate 0.2 volt.
(10) Set the tuning knobs for 30.80 mc . The AN/USM-26 should indicate 47.650 mc ; the 411A should indicate 0.2 volt.
(11) Set the tuning knobs for 30.90 mc . The AN/USM-26 should indicate 47.750 mc ; the 411A should indicate 0.2 volt.
c. 50-Kc Interval Oscillator Test.
(1) Remove the cover from A10; remove modules A11, A12, and A17.
(2) Set the BAND switch on the re-ceiver-transmitter at $30-52 \mathrm{mc}$, and set the tuning knobs for 30.00 mc .
(3) Connect a jumper between pins C and D of connector J 13 (receptacle for A17).
(4) Connect the AN/USM-26 between test point A10J 3 and ground. The AN/USM-26 should indicate 5.6500 mc .
(5) Disconnect the AN/USM-26 from A10j 3 and connect the 411A between A10J 3 and ground. The 411A should indicate 1.8 volts rms.
(6) Set the tuning knobs for 30.05 mc . The 411A should indicate 1.8 volts rms. Disconnect the 411A from

A10j 3 ana reconnect the AN/USM26. The AN/USM-26 should indicate 5.6000 mc .
(7) Connect the $\mathrm{H}-138 / \mathrm{U}$ to an AUDIO connector and press the push-totalk switch. The AN/USM-26 should indicate 5.5500 mc .
(8) Set the tuning knobs for 30.00 mc and press the push-to-talk switch. The AN/USM-26 should indicate 5.6000 mc .
(9) Disconnect the AN/USM-26 from A10J 3 and reconnect the 411A. Press the push-to-talk switch. The 411A should indicate 1.8 volts rms.
(10) Set the tuning knobs for 30.05 mc and press the push-to-talk switch. The 411A should indicate 1.8 volts rms.
d. Faulty Parts Isolation.
(1) Set the tuning knobs for 30.00 mc . Measure the voltages at the points outlined below. Compare them with the normal signal and dc voltages listed.
Note Measure all voltages to ground.
(a) Signal voltage chart.

Point of measurement	Voltage (rms)
	0.3
	5.0
	0.3
Q2 base ---m--m-------m-------*	0.4
R5-CR1 junction (in receive) -----	5.1
(in transmit) --m-	1.5
R7-CR2 junction (in receive) -----	0.0
(in transmit) ----	5.1
	4.6
	0.3
	5.0

(b) Dc voltage chart.

Point of measurement	Volts (dc)
	7.0
	0.0
	7.2
	8.0
Q2 collector -----------------m	2.5
	8.2
	7.0
	0.0
	7.2

(2) After the replacement of a faulty part, perform the alignment pro-
cedure given in e, f, and g below, and repeat the procedures given in a, b, and c above.
(3) Replace A11, A12, and A17. Replace the cover on A10.
e. Preparation for Alignment.
(1) Prepare the AN/USM-26 and the 411 A .
(2) Set the receiver-transmitter controls as follows:
(a) BAND switch to 30-52.
(b) Function switch to ON.
f. 100-KC Interval Oscillator Alignment.
(1) Set the receiver-transmitter tuning knobs to 30.50 mc .
(2) Connect the AN/USM-26, in series with the 470 -ohm resistor, to A10J 2.
(3) Adjust T1 until the AN/USM-26 indicates 47.350 mc .
g. 50-Kc Interval Oscillator Alignment.
(1) Remove the cover from A10. Remove A11, A12, A17, A18 fromthe mother-board.
(2) Set the tuning knobs to 30.05 mc .
(3) Connect a jumper between pins C and D of connector J 13 (receptacle for A17).
(4) Connect the AN/USM-26 to A10J 3.
(5) Adjust T2 until the AN/USM-26 indicates 5.6000 mc .
(6) Disconnect the AN/USM-26 and connect the 411A to A10J 3.
(7) Adjust T3 for peak indication on the 411A.
(8) Replace modules A11, A12, A17 and A18.
80. Isolating Trouble in Module A11 (fig. 24 and 63)
a. Preparation.
(1) Prepare the following equipment:
(a) Frequency Meter AN/USM-26.
(b) Rf Millivoltmeter 411A.
(c) Signal Generator AN/URM-48.
(d) Multimeter ME-26B/U.
(e) Module extender.
(2) Remove A11. Insert the module extender into the receptacle for A11. Remove the cover from A11 and plug All into the module extender. Remove A12 from the mother board.

Figure 62. Module A10, parts location.
(3) Turn the receiver-transmitter function switch to ON.
b. Dc output Level Test.
(1) Connect the AN/URM-48 between A18J 2 and chassis ground. Connect the AN/USM-26 and the 411A across the AN/URM-48 output.
(2) Press S2 (fiq. 31) and adjust the AN/URM-48 frequency to the level to 0.2 -volt as indicated by the 411A.
(3) Disconnect the 411A from the AN/ URM-48 and connect it between pin F of A11J 1 and ground.
(4) Connect the ME-26B/U between A11) 2 and chassis ground. The ME-26B/U should indicate +2.8 volts dc.
c. Faulty Parts Isolation.
(1) Apply a $5.6-\mathrm{mc}, 0.2$-volt signal between A18J 2 and chassis ground. Measure the voltages at the points outlined in the charts in a and b below. Compare them with the normal signal and dc voltages listed.
Note: Measure all voltages to ground.
(a) Signal voltage chart.

Point of measurement	Voltage (rms)
	1.3
Q1 base -m-m--m--m-m-m-m-m-m-m	0.2
	2.8
	0.0

(b) Dc voltage chart.

Point of measurement	Voltage (dc)
	10.0
	8.0
	3.0
	8.2
	2.8

(2) After the replacement of a faulty part, perform the alignment procedure given in d and e below and repeat the procedures given in a and b above.
(3) Replace module A12.
d. Preparation for Alignment.
(1) Set the receiver-transmitter front panel controls as follows:
(a) BAND switch at 30-52.
(b) Tuning knobs to 30.00 mc .
(c) Function switch at ON.
(2) Remove A11. Insert the module extender into the receptacle for A11. Plug A11 into the module extender. Remove module A12.
(3) Connect the output of the AN/URM48 to A18J 2. Connect the 411A across the AN/URM-48 output.
(4) Set the AN/URM-48 output to 6.10 mc and adjust the output level to 0.2 volt as indicated by the 411A.
e. Alignment Procedure.
(1) Connect the ME-26B/U between A11) 2 and chassis ground.
(2) Adjust transformer T1 for a maximum dc indication on the ME-26B/ U.
(3) Set the output of the AN/URM-48 to 5.20 mc .
(4) Adjust transformer T2 for a minimum indication on the ME-26B/U.
(5) Set the output of the AN/URM-48 to 5.60 mc . Adjust T1 until the ME-26B/U indicates +2.8 volts dc.
(6) Replace module A12.
81. Isolating Trouble in Module A12
(fig. 21 and 64)
a. Preparation.
(1) Prepare the following equipment:
(a) Rf Millivoltmeter 411A.
(b) R. F. Signal Generator AN/URM25F.
(c) Frequency Meter AN/USM-26.
(d) Multimeter ME-26B/U.
(e) Module extender.
(2) Remove A12 and A13. Insert the module extender into the receptacle for A12. Plug A12 into the module extender.

Figure 63. Module All, parts location.
(3) Connect a jumper between pin A and C of A12J 1.
(4) Set the front panel controls of the receiver-transmitter as follows:
(a) BAND switch at 30-52.
(b) Tuning knobs to 30.00 mc .
(c) Function switch at ON.
b. Gain Test.
(1) Connect the AN/URM-25F between pin B of A12J 1 and ground. Connect the 411A and the AN/USM-26 across the AN/URM-25 output.
(2) Adjust the AN/URM-25F frequency to 5.60 mc and the output level to 10 millivolts, as indicated by the 411A.
(3) Connect the 411A between A12J 2 and ground. The 411A should indicate approximately 100 millivolts.
(4) If the gain does not meet the standards of the procedure given above, proceed to d below.
(5) If the gain meets the standards given above, proceed to c below. Do not disturb the equipment setings.
c. Bandwidth Test.
(1) With the AN/URM-25F adjusted as in a above, note the output level indicated by the 411A.
(2) Adjust the AN/URM-25F frequency to 5.25 mc and maintain the output level at 10 millivolts. Note the indication on 411A.
(3) Adjust the AN/URM-25F frequency to 6.10 mc and maintain the output level at 10 millivolts. Note the indication on 411A.
(4) The indication obtained in the procedure given in (2) and (3) above should be 6 db less than the response indicated in (1) above.
d. Faulty Parts Isolation.
(1) Apply a $5.60 \mathrm{mc}, 10-\mathrm{mv}$ signal between pin B of A12J 1 and ground. Measure the voltages at the points outlined in the charts in (a) and(b) below. Compare the normal signals and the dc voltages listed in the charts.
Note Connect a jumper between pins A and C of A12J 1 for the measurements listed below.
(a) Signal voltage chart.

Point of measurement	Volts (rms)
Q1 base	0.008
Q1 emitter--	0.0
Q1 collector-	0.0
J2	0.0

(b) Dc voltage chart.

Point of measurement	Voltage (dc)
J1-D ---------------------------	10.0
Q1 ba	4.2
Q1 emittor ---------------------------	4.5

(2) After the replacement of a faulty part, perform the alignment produres given in paragraph 86 and repeat the procedures given in a, b, and cabove. Replace module A13. Remove the module extender.
e. Preparation for Alignment.
(1) Be sure to perform the preparation procedures given in a above.
(2) Connect the AN/URM-25F between pin B of A12J 1 and chassis ground. Connect the 411A and the AN/USM26 across the AN/URM-25 output.
(3) Adjust the AN/URM-25F frequency to 5.60 mc and the output level to 10 millivolts as indicated by the 411A.
(4) Connect the 411A between A12J 2 and ground.
f. Alignment Procedure. To align module A12, alternately adjust T1, L1, T2, and L2 for a maximum indication on the 411A.
82. Isolating Trouble in Module A13
(fig. 20 and 65)
a. Preparation.
(1) Prepare the following equipment:
(a) Signal Genenator AN/URM-48.
(b) Frequency Meter AN/USM-26.
(c) Rf Millivoltmeter 411A.
(2) Turn the receive r-transmitter function switch to ON.
b. 53-Mc Filter Test.
(1) Remove module A9 and connect the AN/TIRM-48 between pin 1 of J 6
(receptacle for A9) and chassis ground.
(2) Connect the AN/USM-26 and the 411A across the AN/URM-48 output. Adjust the AN/URM-48 frequency to 46.500 mc as indicated by the AN/USM-26; set the output level to 3 millivolts as indicated by the 411A.
(3) Disconnect the 411A from the AN/ URM-48 and connect it between A18J 2 and chassis ground.
(4) Set the receiver-transmitter tuning knobs to 30.00 mc .
(5) Record the voltage level at A18J 2 as indicated by the 411A. This level should be approximately 40 millivolts.
(6) Adjust the AN/URM-48 frequency to 47.400 mc as indicated by the AN/USM-26. (Maintain the 3-millivot output level.)
(7) Set the receiver-transmitter tuning knobs to 30.90 mc .
(8) Record the voltage level at A18J 2 as indicated by the 411A.
(9) If the indication obtained in the

Figure 64. Module A12, parts location,
procedure given in (8) above differs from that indicated in (5) above by more than 2 db , proceed to the alignment procedures in c below.
(10) If the indications obtained in the procedure given in (5) and (8) above are normal, testing of A13 is completed.
c. Faulty Parts Isolation. Insert the module extender (fig. 27) into the A13 con-
nector on the mother board. Insert A13 into the module extender. Apply a 10millivolt rf signal of the frequency indicated in the chart in (1) below and measure the voltages across the parts indicated. Compare them with the normal signal levels listed. Press switch S3 for these measurements.
Note Measure all voltages to ground.
(1) Signal voltage chart.

Injection		Point of measurement	Voltage (mv rms)
Frequency (mc)	Location		
51.9	$J 1$ pins E and F	Acress secondary of T1 -	55
51.2	$J 1$ pins E and F	Across T2 -----m----	8
50.1	$J 1$ pins E and F	Across L1	25
46.5	J1 pins C and D	Across T3 -----	7

(2) After the replacement of a faulty part, repeat the procedures given in a and b above.
d. 53-Mc Filter Alignment.
(1) Remove module A15.
(2) Set the receiver-transmitter tuning knobs for 30.50 mc .
(3) Connect the 411A across the AN/ URM-48 output.
(4) Adjust the AN/URM-48 frequency to 53.000 mc , as indicated by the AN/USM-26, and the level to 20 millivolts, as indicated by 411A.
(5) Disconnect the 411A from the AN/ URM-48 and connect it between A12J 2 and chassis ground.
(6) Adjust L1, T2, and T3 for a peak indication on the 411A. A typical indication is about 100 millivolts.
(7) Disconnect the 411A from A12J 2 and connect it across the AN/URM48 output.
(8) Adjust the AN/URM-48 frequency to 52.500, as indicated by the AN/ USM-26, and set the level to 20 millivolts, as indicated by the 411A.
(9) Disconnect the 411A from the AN/ URM-48 and connect it between A12J 2 and chassis ground.
(10) Set the receiver-transmitter tuning knobs for 30.00 mc . Record the level at A12J 2 as indicated by the 411A.
(11) Adjust the AN/URM-48 frequency
to 53.400 mc , as indicated by the AN/USM-26.
(12) Set the receiver-transmitter tuning knobs for 30.90 mc . Record the the level at A12J 2 as indicated by the 411A.
(13) If the levels recorded in (10) and (12) are not equal, $\pm 2 \mathrm{db}$, repeat the procedures given in (8) through (12) above while adjusting T1.

TM5820-398-35-64

Figure 65. Module A13, parts location.
83. Isolating Trouble in Module A14
(fig. 17 and 66)
a. Preparation.
(1) Prepare the following equipment:
(a) Signal Generator AN/URM-48.
(b) Frequency Meter AN/USM-26.
(c) RF Millivoltmeter 411A.
(d) Oscilloscope AN/USM-50A.
(e) Multimeter ME-26B/U.
(i) Module extender.
(2) Remove module A9.
(3) Turn the receiver-transmitter function switch to ON.
b. VFO InPut Test.
(1) Connect the AN/URM-48 between pin 1 of J 2 (receptacle for A9) and chassis ground. Connect the 411A across the AN/URM-48 output.
(2) Adjust the AN/URM-48 frequency to 53 mc and set the level to 10 millivolts, as indicated by the 411A.
(3) Disconnect the 411A from the AN/ URM-48 and connect it between A14J 2 and chassis ground.
(4) Slowly vary the AN/URM-48 frequency from 41 to 65 mc while observing the 411A.
(5) The 411A should indicate 25 millivolts $\pm 2 \mathrm{db}$ throughout the 41- to $65-\mathrm{mc}$ tuned range.
c. 1-Mc Input Test.
(1) Connect the AN/USM-26 between A14J 3 and ground. The frequency meter should indicate $1 \mathrm{mc}+25$ Cps
(2) Connect the AN/USM-50A between A14J 3 and ground. The AN/USM50A should indicate 1.5 volts peak-to-peak.
d. Faulty Parts Isolation.
(1) Insert the module extender into the A14 connector and insert A14 into the module extender. Remove the cover from A14.
(2) Apply a $53-\mathrm{mc}, 0.01$-volt signal between pin A of A14J 1 and chassis ground. Measure the voltages at the points listed below. Compare them with the normal signal and dc voltages listed.
Note Measure all voltages to ground.
(a) Signal voltage chart.

Point of measurement	Voltage (rms)
Q1 base ---------------------------------	0.0045
Q1 collector -0.08	

(b) Dc voltage chart.

(3) After the replacement of a faulty part, perform the alignment procedure outlined in e and f below and repeat the procedures given in a, b, and c above. Replace module A9.
e. Prepration for Alignment.
(1) Set the receiver-transmitter front panel controls as follows:
(a) BAND switch at 30-52.
(b) Tuning knobs to 30.50 mc .
(c) Function switch at ON.
(2) Remove module A9.
f. Alignment Procedures.
(1) Connect the AN/URM-48 between pin 1 of J 6 (receptacle for A9) and chassis ground. Connect the 411A across the AN/URM-48 output.
(2) Adjust the AN/URM-48 frequency to 52 mc and the level to 3 millivolts, as indicated by the 411A.
(3) Disconnect the 411A from the AN/ URM-48 and connect it between A18J 2 and chassis ground.
(4) Record the voltage level at A18J 2 as indicated by the 411A.
(5) Adjust the AN/URM-48 frequency to 54 mc (maintain the output level at 3 millivolts).
(6) Record the voltage level at A18J 2 as indicated by the 411A.
(7) Compare the indications obtained in the procedures given in (4) and (6) above. If the indications are equal to each other, alignment of A14 is accurate. If the indications are not equal to each other, proceed to (8) below.
(8) Repeat the procedures given in (1)
through (7) above and adjust T2 until the indications given in (4) and (6) above are equal. Perform this step as required.
(9) Replace module A9.

TM5820-398-35-65

Figure 66. Module A14, parts location.
84. Isolating Trouble in Module A15 (fig. 18 and 67)
a. Preparation.
(1) Prepare the following equipment:
(a) Frequency Meter AN/USM-26.
(b) Voltmeter, Meter ME-30A/U.
(c) Oscilloscope AN/USM-50A.
(d) Multimeter ME-26B/U.
(e) Module extender.
(2) Set the receiver-transmitter front panel controls as follows:
(a) BAND switch at 30-52.
(b) Tuning knobs to 30.00 mc .
(c) Function switch at ON.
b. Output Frequency and Output Leve Test. Connect the AN/USM-26 between A14J 3 and chassis ground. The AN/USM50A should indicate a minimum of 1.5 volts peak-to-peak.
c. Faulty Parts Isolation.
(1) Insert the module extender into the A15 connector and insert A15 into the module extender.
(2) Place the function switch on there-ceiver-tansmitter at ON. Meas ure the voltages at the points outlined in the charts in (a) and (b) below. Compare them with the normal signal and dc voltages listed. Note: Measure all voltages to ground.
(a) Signal voltage chart.

Point of measurement	Voltage (rms)
Q1 base ---------------------------	0.01
Q1 emitter -------..----------------	0.5
Q1 collector --------------------------	5.3
Q2 base -----------------------------	1.8
	4.3
	4.3

(b) Dc voltage chart.

Point of measurement	Voltage (dc)
	10.0
L1 - C6 junction -----------------	9.8
Q1 base ------------------------	6.8
Q1 emitter ------------------------	6.8
Q2 base -----------------------	9.8
Q2 emitter ----------------------	7.8

(3) After the replacement of a faulty part, perform alignment procedures given in d and e below and repeat the procedure given in a and b above.
d. Alignment Procedure. With A15 extended (c(1) above), set the receivertransmitter front panel controls as follows:
(1) BAND switch at 30-52.
(2) Tuning knobs to 30.00 mc .
(3) Function switch at ON.
e. Alignment Procedure.
(1) Connect the AN/USM-26 between A14J 3 and chassis ground.
(2) Adjust A15T1 until the AN/USM-26 indicates $1.0000 \mathrm{mc}+25 \mathrm{cps}$.
(3) Remove the module extender.
85. Isolating Trouble in Module A16 (fig. 25 and 68)
a. Preparation.
(1) Insert the module extender into J 11

TM5820-398-35-66

Figure 67, Module A15, parts location.
(receptacle for A16) and insert A16 into the module extender.
(2) Prepare Multimeter ME-26B/U.
(3) Set the front panel controls of the receiver-transmitter as follows:
(a) BAND switch at 30-52.
(b) Tuning knobs to 30.00 mc .
(c) Function switch at ON.
b. Output Voltage Test.
(1) Connect the ME-26B/U between pins C and D of A16J 1, and note the voltage.
(2) Connect the ME-26B/U between A16J 2 and ground. The ME-26B/U should indicate the same voltage as that in (1) above.
(3) Connect the ME-26B/U between pins F and D of A16J 1. With exactly +10 volts input, the ME-26B/U should indicate +9.5 volts dc ± 0.5. With a +15 volts dc input ± 0, the ME-26B/U should indicate +10 volts dc ± 0.5.
(4) Connect the ME-26B/U between A16J 3 and ground. The ME-26B/U should provide the same indications as given in (3) above.
c. Faulty Parts Location.
(1) Connect A16 to a 12 -volt, dc-power source. Measure the voltages at the points outlined in the chart in (2) below. Compare them with the normal dc voltages listed.
Note: Measure all voltages to ground.
(2) Dc voltage chart.

Point of measurement	Volts (de)
	12.5
	12.2
	9.8
	12.0 9.8
	9.8
Q2 emitter - -	4.7
	12.0
Q2 base m-m-m-m-m-m-m-m-m	5.3

(3) Remove the module extender.
86. Isolating Trouble in Module A17 (fig. 23 and 69)
a. Preparation.
(1) Prepare the following equipment: (a) Multimeter ME-26B/U.

TM5820-398-35-67

Figure 68. Module A 16, parts location.
(b) Rf Millivoltmeter 411A.
(c) Oscilloscope AN/USM-50A.
(d) R. F. Signal Generator AN/URM25F.
(e) Frequency Meter AN/USM-26.
(f) Module extender.
(2) Insert the module extender into J 13 (receptacle for A17). Insert A17 into the module extender.
(3) Set the AN/URM-25F output signal frequency to 5.6 mc .
(4) Connect the AN/URM-25F between A18J 2 and chassis ground.
(5) Connect the 411A between pin B of A17J 1 and ground.
(6) Connect the ME-26B/U between pin F of A17J 1 and ground.
(7) Set the receiver-transmitter function switch to ON, and the tuning knobs to 30.05 mc .
(8) Remove module A12.
b. Bandwidth Test,
(1) Adjust the AN/URM-25F for a 0.2volt rms indication on the 411A.
(2) Note the voltage at pin F of A17J 1, indicated by the ME-26B/U. Normal voltage indication is 3.8 volts dc.
(3) Connect the AN/USM-26 across the AN/URM-25F output and adjust the AN/URM-25F frequency to 5.6000 mc as indicated by the AN/USM26.
(4) Connect the AN/USM-50A to A17J 2.
(5) Connect the 411A across the AN/ URM-25F output.
(6) Adjust the AN/URM-25F signal level to 0.1 volt as indicated by the 411A and note the indication obtained on the AN/USM-50A.
(7) The normal peak-to-peak indication displayed on the AN/USM-50A should exceed 4.5 volts.
(8) If the test results are not normal, proceed to c below. (Do not disturb the test equipment settings.)
c. Alignment.
(1) Disconnect the 411A from the AN/ URM-25F. Use the 411A to measure signal level between A10J 3 and chassis ground. A normal indication is 1.8 volts rms.
(2) Adjust T1 for a peak indication on
the AN/USM-50A (connected to pin F of A17J 1).
(3) Repeat the procedures given in b above.
d. Faulty Part Isolation.
(1) Set the AN/URM-25F frequency to 5.6 mc , and the level to 0.1 volt rms at A18J 2.
(2) Measure the voltages at the points listed in the charts below. Compare them with the normal signal and dc voltages listed.
Note Measure all voltages to ground, with S 2 (fig. 31) pressed during th. test.
(a) Signal voltage chart.

Point of measurement	Volts (rms)
Q1 base ----m-----m------------	0.088
	0
	4.8

(b) Dc voltage chart.

Point of measurement	Volts (rms)
J1-A ----m------	10
Q1 base ---	7.7
Q1 emitter	8.0
Q1 collector ----	0
CR1-C3 junction	6.6
CR2-C4 junction	1.3

(3) After replacing a faulty part, repeat the procedures given in b and c above.
87. Isolating Troublesin Module A18 (fig. 22 and 70)
a. Preparation.
(1) Prepare the following equipment:
(a) Rf Millivoltmeter 411A.
(b) Frequency Meter AN/USM-26.
(c) R.F. Signal Generator AN/URM25F.
(d) Multimeter ME-26B/U.
(e) Module extender.
(2) Remove modules A10, A12, and A18.
(3) Insert the module extender into J 14 (receptacle for A18) and insert A18 into the module extender.
(4) Turn the receiver-transmitter function switch to ON.

Figure 69. Module A17, parts location
b. Gain Test.
(1) Connect the AN/URM-25F between pin F of A18J 1 and ground. Connect the 411A and the AN/ URM-26 across the AN/URM25 F output.
(2) Adjust the AN/URM-25F frequency to 5.6000 mc as indicated by the AN/USM-26 and the level to 4 millivolts, as indicated by the 411A,
(3) Disconnect the 411A from the AN/ URM-25F and connect it between A18J 2 and chassis ground.
(4) A normal output signal voltage at A18J 2 is 0.1 volt rms, as indicated by the 411A.
(5) If a proper indication is not obtained, proceed to d below. (Do not disturb the test equipment settings.)
(6) If the proper indication is obtained, proceed to c below. (Do not disturb the test equipment settings.)
c. Bandwidth Test.
(1) Connect the 411A across the AN/ URM-25F output.
(2) Adjust the AN/URM-25F signal level to 1.5 millivolts, as indicated by the 411A.
(3) Disconnect the 411A from the AN/ URM-25F and connect it between A18J 2 and chassis ground.
(4) Adjust the AN/URM-25 frequency to 5.3000 mc as indicated by the AN/USM-26. Normal 411A indication at A18 2 should be 0.07 volt rms.
(5) Adjust the AN/URM-25F frequency to 5.9000 mc as indicated by the AN/USM-26. Normal 411A indication at A18J 2 should be 0.07 volt rms.
(6) If the indications obtained in the procedures given in (4) and (5) above are not normal, proceed to d below. (Do not disturb test equipment settings.)
(7) If the indications obtained in (4) and (5) above are normal, the A18 testing is completed.
d. Alignment Procedure.
(1) Connect the 411A across the AN/ URM-25F output.
(2) Adjust the AN/URM-25F frequency to 5.6000 mc as indicated by the AN/USM-26 and the level to 1.5 millivolts, as indicated by the 411A.
(3) Disconnect the 411A from the AN/ URM-25 F and connect it between A18J 2 and chassis ground.
(4) Adjust L1, T1, L2, and T2 for peak indication on the 411A.
(5) Repeat the procedure given inb and c above.
e. Faulty Parts Isolation.
(1) Set the AN/URM-25F output frequency to 5.600 mc as indicated by the AN/USM-26 and adjust the voltage level between pin F of A18J 1 and chassis ground to 2 millivolts as indicated by the 411A.
(2) Measure the voltages at the points listed in the charts given in (a) and (b) below. Compare these with the normal signal and dc voltages listed.
Note: Measure all voltages to ground.
(a) Signal voltage chart.

Point of measurement	Volts (rms)
	0.002
	0.200
Q2 base --------------------------	0.0025
Q2 emitter --- ---------------------	0.0037
	1.4
	0.095

(b) Dc voltage chart.

Point of measurement	Volts (dc)
	5.0
	5.2
	0
	5.0
	5.2
	0
R1-R9 junction ---m-----m-m-m	8.0

(3) After replacing a faulty part, repeat all procedures given above.
(4) Replace modules A10 and A12. Remove the module extender.
88. Isolating Troubles in Module A19 (fig. 9 and 71)
a. Preparation.
(1) Prepare the following equipment:
(a) Audio Oscillator TS-382F/U.
(b) Frequency Meter AN/USM-26.
(c) Meter, Modulation ME-57/U.
(d) Voltmeter, Meter ME-30A/U.
(e) Spectrum Analyzer TS-723A/U.
(f) Multimeter ME-26B/U.
(g) Oscilloscope AN/USM-50A.
(h) Rf Millivoltmeter 411A.
(i) Adapter UG-274B/U.
(j) Rf Wattmeter AN/URM-43A.
(k) Module extender.
(2) Remove A19.
(3) Insert themodule extender into J 15 (receptacle for A19) and insert A19 into the module extender.
(4) Connect the AN/URM-43A to ANT connector J 2.
b. Level and Frequency Test.
(1) Connect the AN/USM-26 between A20J 2 and chassis ground.
(2) Turn the receiver-transmitter function switch at ON, and set the BAND switch at 30-52.

TM 5820-398-35-69

Figure 70. Module A18, parts location.
(3) Connect the 411A to A20 2.
(4) Depress and hold the push-to-talk switch. Observe the 411A and the AN/USM-26.
(5) The output level, indicated by the 411A, should be 650 millivolts.
(6) The output frequency, indicated by the AN/USM-26, should be 11.4485 $\mathrm{mc} \pm 300 \mathrm{cps}$.
(7) Release the push-to-talk switch.
(8) Disconnect the AN/USM-26 from A20J 2. Connect the ME-57/U between A20J 2 and chassis ground.
(9) Press the push-to-talk switch. Observe the indication on the ME-57/ U. Deviation indicated by the ME-57/U should be $3 \mathrm{kc} \pm 0.5 \mathrm{kc}$. Release the push-to-talk switch.
(Io) Change the receiver-transmitter BAND switch from 30-52 to 53-75.
(11) Press the push-to-talk switch and observe the 411A and the ME-57/U.
(12) The 411A should indicate $650 \mathrm{mil}-$ livolts; the ME-57/U should indicate a deviation of $3 \mathrm{kc}+0.5$.
(13) Release the push-to-talk switch.
(14) Disconnect the ME-57/U from

A20J 2 and connect the AN/USM-26 to that point.
(15) Press the push-to-talk switch.
(16) The AN/USM-26 should indicate $11.5485 \mathrm{mc} \pm 300 \mathrm{cps}$.
(17) Release the push-to-talk switch.
(18) If the indications obtained in the procedure given in (5), (6), (9), (120), and (16) above are not normal, proceed to the alignment procedures in c below. (Do not dis turb equipment settings or connections.)
(19) If the indications obtained above are normal, the A19 testing is completed.
c. Alignment Procedure.
(1) Remove module A23.
(2) Connect the TS-382F/U between pin D of an AUDIO connector and ground. Connect the ME-30A/U across the TS-382 F/U output.
(3) Adjust the TS-382F/U frequency to 1 kc and the level to 1.4 millivolts, as indicated by the ME-30A/U.
(4) Connect the ME-57/U across the AN/USM-26 input through a UG274B/U.
(5) Connect the TS-723A/U to the AUDIO OUTPUT connector of the ME-57/U.
(6) Connect the AN/USM-50A between A22J 3 and chassis ground.
(7) Turn the receiver-transmitter BAND switch to $30-52$. Press and hold the push-to-talk switch.
(8) Adjust the output level of the TS$382 \mathrm{~F} / \mathrm{U}$ to obtain a 5 -volt peak-topeak presentation on the AN/USM50A. If clipping is observed, slowly decrease the TS-382F/U output level until the wave becomes sinusoidal.
(9) Adjust C 4 for a minimum indication on the ME-57/U.
(10) Adjust C5 until the AN/USM-26 indicates $11.4485 \mathrm{mc} \pm 300 \mathrm{cps}$.
(11) Adjust L2 until the ME-57/U indicates a $10 \mathrm{kc} \pm 2$ deviation.
(12) Readjust C4 to obtain a maximum distortion indication on the TS723A/U.
(13) Repeat the procedures given in (10)
through (12) above as required. Release the push-to-talk switch.
(14) Change the receiver-transmitter BAND switch from 30-52 to 53-75.
(15) Press and hold the push-to-talk switch. Repeat the procedures given in (8) above if required.
(16) Adjust C1 for a minimum indication on the ME-57/U.
(17) Adjust C2 until the AN/USM-26 indicates $11.5485 \mathrm{mc} \pm 300 \mathrm{cps}$.
(18) Adjust L1 until the ME-57/U indicates a $10 \mathrm{kc} \pm 2$ deviation.
(19) Readjust C1 to obtain a minimum distortion indication on the TS723A/U.
(20) Repeat the procedures given in (17) through (20) above as required. Release the push-to-talk switch.
d. Faulty Part Isolation.
(1) Remove module A19.
(2) Make resistance checks, using the ME-26B/U, between the pins of J 1 on A19 listed in the chart below:

(3) Check crystals A19Y1 and A19Y2 by substitution.
(4) After replacing a faulty part, replace module A19 and repeat the procedures given in b and c above. Replace module A23,
89. Isolating Troubles in Module A20 fig. 8 and 72)
a. Preparation.
(1) Prepare the following equipment:
(a) Audio Oscillator TS-382F/U.
(b) Frequency Meter AN/USM-26.
(c) Meter, Modulation ME-57/U.
(d) Rf Millivoltmeter 411A.
(e) Voltmeter, Meter ME-30A/U.
(f) Oscilloscope AN/USM-50A.
(g) Rf Wattmeter AN/URM-43A.
(h) Module extender.
(2) Re move modules A20 and A23.

Figure 71. Module A19, parts location.

Place the alignment cover (fig. 28) on A20.
(3) Insert themoduleextender into J 16 (receptacle for A20). Insert A20 into the module extender.
(4) Connect the AN/URM-43A to ANT connector J 2.
b. Frequency Accuracy Test.
(1) Set the receiver-transmitter BAND switch at $30-52$, and the function switch at ON.
(2) Connect the 411A and the AN/USM26 to A20J 2.
(3) Press the push-to-talk switch.
(4) The AN/USM-26 should indicate $11.451 \mathrm{mc} \pm 500 \mathrm{cps}$, and the 411A should indicate 0.68 volt rms.
(5) Turn the BAND switch to 53-75. The AN/USM-26 should indicate $11.551 \mathrm{mc} \pm 500 \mathrm{cps}$, and the 411A should indicate 0.68 volt rms.
(6) If the frequencies given in (4) and (5) above cannot be obtained, proceed to d below.
c. Frequency Deviation Test.
(1) Connect the TS-382F/U between pin D of an AUDIO connector and
ground. Connect the ME-30A/U across the TS-382F/U output.
(2) Adjust the TS-382F/U frequency to 1 kc and the level to 1.4 millivolts, as indicated by the ME-30A/U.
(3) Connect the ME-57/U to A20J 2.
(4) Press the push-to-talk switch and repeat the procedure given in (2) above.
(5) The ME-57/U should indicate a deviation of $10 \mathrm{kc} \pm 2$.
(6) Release the push-to-talk switch.
(7) If the deviation given in (5) above is not obtained, proceed to ebelow.
d. Alignment Procedures.
(1) T-urn the receiver-transmitter BAND switch to 30-52.
(2) Press the push-to-talk switch.
(3) Connect the AN/USM-26 and the 411A between A20J 2 and chassis ground; adjust T1 for 11.451 mc $\pm 500 \mathrm{cps}$.
(4) Adjust T2 for a peak indication on the 411A.
(5) Release the push-to-talk switch.
(6) If the indications given in (3) and (4) are not obtained, proceed to e below. If they are obtained, repeat c above.
e. Faulty Part Isolation.
(1) Press the push-to-talk switch.
(2) Set the TS-382F/U frequency to 1 kc and the level to 1.4 millivolts. Connect TS-382F/U between pin D of an AUDIO connector and ground.
(3) Measure the voltages at the points listed in the charts in (a) and (b) below. Compare them with the normal signal and dc voltages listed.
Note Measure all voltages to ground.
(a) Signal voltage chart.

(b) Dc voltage chart.

Point of measurement	Volts (dc)
Q1 base	
Q1 emitter	5.9
Q1 collector $-\cdots$	5.7
CR1-C4 junction	0
Q2 base	4.8
R8-R7 junction	
	4.7

(4) After replacing a faulty part, repeat the procedures given in b, c, and d above.
(5) Replace module A23. Remove the module extender.
90. Isolating Trouble in Module A21
(fig. 85 and 73)
a. Preparation.
(1) Prepare the following equipment:
(a) Signal Generator AN/URM-48.
(b) Frequency Meter AN/USM-26.
(c) Voltmeter, Meter ME-30A/U.
(d) Rf Millivoltmeter 411A.
(e) Spectrum Analyzer TS-723A/U.

TM5820-398•35-71

Figure 72. Module A20, parts location.
(f) Handset $\mathrm{H}-138 / \mathrm{U}$.
(g) Rf Wattmeter AN/URM-43A.
(h) Multimeter ME-26B/U.
(2) Remove module A5.
(3) Connect the $\mathrm{H}-138 / \mathrm{U}$ to an AUDIO connector.
(4) Set the receiver-transmitter function switch at ON.
(5) Connect the AN/URM-43A to ANT connector J 2.
(6) Connect the AN/URM-48 output to the AN/USM-26. Adjust the AN/ URM-48 frequency to 11.500 mc , as indicated by the AN/USM26.
(7) Disconnect the AN/URM-48 from the AN/USM-26 and connect it between pins C and D of J 9 (receptacle for A5).
(8) Frequency modulate the AN/URM48 with a 1,000-cps sinusoidal signal at a deviation of +10 kc peak.
b. Gain Test.
(1) Connect the 411A across the output of the AN/URM-48.
(2) Adjust the level of the AN/URM48 to obtain a I-millivolt indication on the 411A.
(3) Connect the ME-26/U between A25J 4 and ground.
(4) Adjust the receiver-transmitter VOLUME control to obtain a 1.0volt indication on the ME-26/U.
(5) Connect the ME-30A/U between A25J 3 and ground. The ME-30A/U should indicate between 180 and 360 millivolts. Record the voltage.
(6) Decrease the AN/URM-48 level until the ME-30A/U indication decreases 3 db from the level noted in (5) above.
(7) The AN/URM-48 output 1 e ve 1 across pins C and D of J 9 should be between 2.5 and 5.0 microvolt rms.
(8) If the results given in (1) through (7) above are not obtained, proceed toe below.
c. Bandwidth Test.
(1) Repeat the procedures given in $\mathrm{a}(1)$ through (8) above.
(2) Connect the 411A between the case of Q4 and ground.
(3) Adjust the output of the AN/URM48 until the voltage indicated on the 411A is 100 millivolts. Record the AN/URM-48 setting, which should be about 20 microvolt.
(4) Increase the AN/URM-48 output 6 db above that noted in (3) above.
(5) Increase the AN/URM-48 frequency until the voltage indicated by the 411A is 100 millivolts.
(6) Connect the AN/URM-48 to the AN/ USM-26. Record the frequency indicated by the AN/USM-26.
(7) Adjust the AN/URM-48 frequency to 11.500 mc and the level to that noted in (4) above between pins C and D of J 9 .
(8) Decrease the AN/URM-48 frequency until the voltage indicated by the 411A is 100 millivolts.
(9) Connect the AN/URM-48 to the AN/ US M-26. Record the frequency indicated by the AN/USM-26.
(Io) The difference between the frequencies noted in (6) and (9) above is the $6-\mathrm{db}$ bandwidth and should not be less than 32 kc .
(11) If the $6-\mathrm{db}$ bandwidth is not as described above, proceed to e below.
(12) Adjust the frequency of the AN/ URM-48 to 11.500 mc and the output voltage to 60 db above the level noted in (3) above across pins C and D of 9.
(13) Increase the AN/URM-48 frequency until the voltage indicated by the 411A is 100 millivolts.
(14) Connect the AN/URM-48 to the AN/ USM-26. Record the frequency indicated by the AN/USM-26.
(15) Adjust the AN/URM-48 frequency to 11.500 mc and the output voltage to 60 db above the level noted in (3) above across pins C and D of J 9.
(16) Decrease the AN/URM-48 frequency until the voltage indicated by the 411A is 100 millivolts.
(17) Connect the AN/URM-48 to the AN/ USM-26. Record the frequency indicated by the AN/USM-26.
(18) The difference between the frequencies noted in (14) and (17)
above is the $60-\mathrm{db}$ bandwidth and should not exceed 100 kc .
(19) If the $60-\mathrm{db}$ bandwidth is not as described, proceed to e below.
d. Alignment Procedure.
(1) Repeat the procedures given in a (1) through (9) above.
(2) Set the VOLUME control on the re-ceiver-transmitter fully counterclockwise.
(3) Adjust the AN/URM-48 output voltage to 2.5 microvolt between pins C and D of J 9 .
(4) Tune T1 and T2 for a maximum indication on the ME-30A/U.
(5) Adjust the VOLUME control on the receiver-transmitter to produce not more than 1 volt of audio signal as indicated by the ME-26 B/U (connected between A25J 4 and ground).
(6) Connect the TS-723A/U between A25J 4 and chassis ground.
(7) Tune L4 and T2 for a minimum 1,000-cycle distortion as indicated by the TS-723A/U.
(8) Repeat the procedures given in (4) through (7) above until the audio output, indicated by the ME-20A/U, cannot be increased by tuning.
(9) Replace A5.
e. Faulty Parts Isolation.
(1) Remove A5.
(2) With the AN/URM-48 set to 11.50 mc , adjust the output level at J 9 , pins C and D, as indicated in the chart in (a) below.
(3) Measure the voltages at the points listed in the charts in (a) and (b) below. Compare them with the normal signal and dc voltage listed. Note: Measure all voltages to ground.
(a) Signal voltage chart.

Point of mensurement	Millivolts (rme)
	160
	49
Q6 collector ${ }^{\text {C }}$	$\begin{aligned} & 1.65 \\ & \text { volts } \end{aligned}$
	150

a Make this measurement with the AN/URM-48 output adjusted to 30 millivolts.
$\mathrm{b}_{\text {Make this }}$ measurement with the AN/URM-48 output adjusted to 100 microvolts.
CMake this measurement with the AN/URM-48 output adjusted to 5 microvolts.
(b) Dc voltage chart.

(4) After replacing a faulty part, repeat the procedures given in d above.
91. Isolating Troubles in Module A22 (fig. 6 and 74)
a. Preparation.
(1) Prepare the following test equipment:
(a) Audio Oscillator TS-382F/U.
(b) Multimeter ME-26B/U.
(c) Spectrum Analyzer TS-723A/U.
(d) Handset $\mathrm{H}-138 / \mathrm{U}$.
(e) Rf Wattmeter AN/URM-43A.
(f) Voltmeter, Meter ME-30A/U.
(2) Connect the AN/URM-43A to ANT connector J 2.
(3) Remove module A23.
(4) Connect the H-138/U to an AUDIO connector.
(5) Set the front panel controls of the receiver-transmitter as follows:
(a) BAND switch at 30-52.

Figure 73. Module A21, parts location.
(b) Tuning knobs for 30.00 mc .
(c) Function switch at ON.
b. Speech Amplifier Limiter Distortion Test.
(1) Connect TS-382F/U betweenpins 3 and 4 of A22J 1 . Connect the ME30A/U across the TS-382F/U output.
(2) Set TS-382F/U for an output frequency of 500 cps . Adjust the TS-382F/U for a 1-millivolt indication on the ME-30A/U. (Maintain this level for each frequency setting.)
(3) Connect the TS-723A/U between A22J 3 and ground. Press the push-to-talk switch. Measure the audio distortion. Repeat the procedure
given above for $300 \mathrm{cps}, 2 \mathrm{kc}$, and 3 kc. Normal test results for each setting is 3.5 percent. Normal output signal level for each setting is 1.4 volts rms.
(4) If the audio distortion output level is found to be greater than the prescribed levels, proceed to c below.
c. Faulty Part I solation.
(1) Set the TS-382F/U to 1 kc , and adjust its output for a I-millivolt rms indication on the ME-30A/U.
(2) With the push-to-talk switch pressed, measure the voltages at the points listed in the charts in a and b below. Compare them with the normal signal and dc voltages listed.
Note: Measure all voltages to ground.
(a) Signal voltage chart.

Point of measurement	Millivolts (rms)
Q1 base -----------------------	0.86
	0.65
	15
	15
	11
Q2 collector --m--------m-m-m	158
Q3 base ------m-----m-m-m	155
	138
	1.4 volts 1.4 volts

(b) Dc voltage chart.

Point of measurement	Volts (dc)
	6.0
	6.3
	3.5
	5.9
	6.0
	2.7
	5.9
	6.0
	2.8

(3) After replacing a faulty part, repeat the procedure given in b above.
(4) Replace A23.
92. Isolating Trouble in Module A23
(fig. 7 and 76)
a. Preparation.
(1) Prepare the following equipment:
(a) Frequency Meter AN/USM-26.

Figure 74. Module A22, parts location.
(b) Multimeter ME-26B/U.
(c) Handset $\mathrm{H}-138 / \mathrm{U}$.
(d) Rf Wattmeter AN/URM-43A.
(2) Connect AN/URM-43A to ANT connector J 2.
(3) Set the front panel controls of the receiver-transmitter as follows:
(a) BAND switch at 30-52.
(b) Tuning knobs for 30.00 mc .
(c) Function switch at ON.
(4) Connect the $\mathrm{H}-138 / \mathrm{U}$ to an AUDIO connector.
(5) Press the push-to-talk switch.
b. 150-CVS Tone Test.
(1) Connect the ME-26B/U between A23J 3 and ground.
(2) Adjust R12 for an ME-26B/U indication of 0.8 volt.
(3) Adjust the AN/USM-26 to indicate 150 cps and connect it between A23J 3 and ground.
(4) Adjust R3 to obtain a $150-\mathrm{cps}$ indication on the AN/USM-26.
(5) If the prescribed levels are not obtained, proceed to c below.
c. Faulty Part Isolation.
(1) Measure the voltages at the points listed in the charts in (a) and (b) below. Compare them with the normal signal and dc voltages listed. Note: Make all voltages to ground.
(a) Signal voltage chart.

Point of measurement	Millivolts (rms)
Q1 base $-\infty$	39
Q1 emitter	35
Q1 collector $-\infty$	2.0 volts
Q3 emitter	17

(b) Dc voltage chart.

Point of measurement	Volts (dc)
Q1 base ----------------------	8.9
Q1 emitter -------------------	9.2
Q1 collector ------------------	6.0
Q2 base ---------------------	9.2
Q2 emitter --------------------	9.4
Q2 ${ }^{\text {a }}$---------------------------------	6.0 2.7

(2) After replacing a faulty part, repeat b above.
93. Isolating Troubles in Module A24
(fig. 5 and 76)
a. Preparation.
(1) Prepare the following equipment:
(a) Audio Oscillator TS-382F/U.
(b) Voltmeter, Meter ME-30A/U.
(c) Multimeter ME-26B/U.
(2) Connect the TS-382F/U between A25J 3 and ground.
(3) Connect the ME-30A/U across the TS-382F/U output.
(4) Set the TS-382F/U frequency to 150 cps and the level to 20 millivolts, as indicated by the ME30A/U.
(5) Set the ME-26B/U to indicate ohms ($\mathrm{R} \times 1 \mathrm{~K}$.
(6) Remove module A21.
(7) Set the front panel controls of the receiver-transmitter as follows:
(a) BAND switch at 30-52.
(b) Tuning knobs for 30.00 mc .
(c) Function switch at RETRANS.

Figure 75. Module A 23, parts location.
b. Performance Test.
(1) Disconnect the ME-30A/U from the TS-382F/U and connect it between pins 1 and 2 of A24J 1.
(2) Adjust the TS-382F/U for a 10millivolt indication on the ME30A/U.
(3) Connect the ME-26B/U between contact 7 of squelch relay K3 and ground. The ME-26B/U indication should be infinity.
(4) Slowly increase the TS-382F/U level until the ME -26 B/U indicates O ohms.
(5) The ME-30A/U indication should be 20 millivolts \pm.
(6) If the indication obtained in (5) above exceeds the limits, adjust the TS-382F/U level to obtain a 20millivolt indication on the ME30A/U. Adjust R15 until the ME$26 \mathrm{~B} / \mathrm{U}$ indicates 0 ohms.
(7) Increase the TS-382F/U level to obtain a 50-millivolt indication on the ME-30A/U.
(8) Increase the TS-382F/U frequency to 160 cps . The ME-26B/U indication should remain zero.
(9) Increase the TS-382F/U frequency to 170 cps . The ME-26B/U inication should be infinity.
(10) Deere as e the TS-382F/U frequency to 140 cps . The ME-26B/U indication should be zero.
(11) Decrease the TS-382F/U frequency to 130 cps . The ME -26 B/U indication should be infinity.
c. Faulty Parts Isolation.
(1) Set the TS-382F/U frequency to 150 cps and the level to 20 millivolts at A24J 1 pins 1 and 2.
(2) Measure the voltages at the points listed in the charts in (a) and (b) below. Compare them with the normal signal and dc voltages listed. Note: Measure all voltages to ground.
(a) Signal voltage chart.

Point of measurement	Millivolts (rms)
Q1 base ----------------------	1.8
Q1 emitter --------------------	2.1
Q1 collector ------------------	48
Q2 base ----------------------	2.2
Q2 emitter -------------------	2.1
Q2 collector ------------------	0
Q3 base -----------------------	48
Q3 collector ------------------	600
Q4 base ------------------------	540
Q4 collector -----------------	90
J2-3 ------------------------	90

(b) Dc voltage chart.

Point of measurement	Volts (dc)
J2-1	10
Q1 base	9.1
Q1 emitter --------------	9.3
Q1 collector ------------------	8.3
Q2 base	9.1
Q2 emitter --------m-----------	9.3
Q2 collector ----------	0
Q3 base -----------------------	8.3
	8.5
	-0.12
Q4 emitter -------------------	0
Q4 collector ------------------	4.4
	4.4
Q5 amitter $-\cdots$	4.6

(3) After replacing a faulty part, re-
peat the procedure give n in b above.
(4) Replace A21.
94. Isolating Trouble in Module A25 (fig. 4 and 77)
a. Preparation.
(1) Prepare the following equipment:
(a) Audio Oscillator TS-382F/U.
(b) Voltmeter, Meter ME-30A/U.
(c) Spectrum Analyzer TS-723A/U.
(d) Handset $\mathrm{H}-138 / \mathrm{U}$.
(e) Rf Wattmeter AN/URM-43A.
(f) Multimeter ME-26B/U.
(2) Remove module A21.
(3) Connect the AN/URM-43A to ANT connector J 2.
(4) Connect the $\mathrm{H}-138 / \mathrm{U}$ to an AUDIO connector.
(5) Set the front panel controls of the receiver-transmitter as follows:
(a) BAND switch at 30-52.
(b) Tuning knobs for 30.00 mc .
(c) Function switch at ON.
(6) Connect the TS-382F/U between A25J 3 and ground. Connect the ME30A/U across the TS-382F/U output.
(7) Adjust the TS-382F/U frequency to 1 kc and the level to 0.25 volt as indicated by the ME-30A/U.
b. Audio Amplifier Distortion and Output Test.
(1) Connect the ME-30A/U to A25J 4 and adjust the front panel VOLUME control to obtain an ME-30A/U indication of 1 volt. Maintain this level for each setting.
N ote: If the I-volt audio output level cannot be obtained, proceed to c below.
(2) Connect the TS-723A/U to A25J 4, and measure the audio distortion. Repeat the procedure above for $300 \mathrm{cps}, 2 \mathrm{kc}$, and 3 kc . The normal result should be less than 3 percent for each setting.
c. Faulty Part Isolation.
(1) Set the TS-382F/U to 1 kc , and adjust its output for a 0.25 -volt-rms indication on the ME-30A/U at A25J 3.
(2) Adjust the VOLUME control for a 1 -volt rms signal at A25J 4.

TM5820-398-35-75

Figure 76. Module A24, parts location.
(3) Measure the voltages at the points listed in the charts in (a) and (b) below. Compare them with the normal signal and dc voltages listed. Note Make all voltages to ground.
(a) Signal voltage chart.

Point of measurement	Millivolts (rms)
J3 -mase-	250
Q1 base	230
Q1 colltector	230
Q2 base $-\cdots$	0
Q2 emitter	12
Q2 collector	7.8

(b) Dc voltage chart.

Point of measurement	Volts (dc)
Q1 base ---m------------------	4.1
	0
	4.25
	8.5
	8.7
	0.67

(4) After replacing a faulty part, repeat the procedures given in a and b above.
(5) Replace A21.
95. Selector Mechanism Disassembly

Procedure
(fig. 78)
Disassemble the gear train only to the degree required to remove the defective part.
a. Remove the selector mechanism from the receiver-transmitter (para 48).
b. Remove taper pin (48) from arm assembly (49) and remove arm assembly (49). Remove taper pin (13) from stop (14) and remove stop (14).
Note Setscrews (47) and (15) are not supplied with the selector mechanism, but are used to secure arm assembly (49) and stop (14) to their respective shafts while drilling replacement parts (para 96).
c. Disconnect spring (32) from spring retainer (18) and move arm assembly (33) away from shaft assembly (30) to facilitate removal of shaft assembly (30).

TM5820-398.35-76

Figure 77. Module A25, parts location.
d. Remove retaining ring (12) fromshaft assembly (30) and remove shaft assembly (30), with thrust washer (31) and 0-rings (29), from housing assembly (59).
e. Remove pin (5) that secures arm (4) to housing assembly (59) and remove arm (4) and spring (6). Remove bushing (3) from sleeve (2).
f. Remove taper pin (7) that secures sleeve (2) to shaft assembly (16) and remove sleeve (2).
Note: The setscrew (8) is not supplied with the selector mechanism, but is used to secure sleeve (2) to shaft assembly (16) during drilling of replacement parts (para 96).
g. Remove retaining ring (1) that secures shaft assembly (16) to housing assembly (59). Remove shaft assembly (16) and thrust washer (17) from housing assembly (59).
h. Remove retaining ring (34) that secures arm assembly (33) to retaining arm (35). Remove arm assembly (33) and spring (32).

Remove ball plunger (38) from housing assembly (59).
Note: To facilitate disassembly, remove shaft assemblies (57) and (69) in one operation (j below).
j. Remove retaining rings (45) and (46) that secure shaft assemblies (57) and (69) to housing assembly (59).
k. Remove shaft assemblies (57) and (69) with all attached parts from housing assembly (59).

Note: Treat shaft assembly (57), together with gear segment (81) and gear (82), as one unit. Do not disassemble further.
I. Remove sleeve (85) from spring retainer (18) and disconnect spring (83) from spring retainer (18).
m. Remove screw (50) and lockwasher (51) that secure mask assemblies (53) and (54) to shaft assembly (57).
n. Remove 0 -rings (52), mask assemblies (53) and (54), thrust washer (58), 0 -rings (55), and spring (56) from shaft assembly (57).
o. Remove spring (83) and sleeve (84) from mask assembly (53).
p. Remove retaining ring (79) that secures arm assembly (78) to shaft assembly (57). Remove arm assembly (78).
q. Remove spring (56) from arm assembly (78).
r. Remove thrust washer (70) from shaft assembly (69). Remove taper pin (68) from gear (67); then remove O-rings (65) and gear (67) from shaft assembly (69).
Note: Setscrew (66) is not supplied with the se lector mechanism, but it is used to secure gear (67) to shaft assembly (69) during drilling of re placement parts (para 96).
s. Remove taper pin (42) and setscrew (43) that secure coupler assembly (44) and remove coupler assembly (44).
t. Remove retaining ring (41) that secures antibacklash gear assembly (36) to housing assembly (59) and remove antibacklash gear assembly (36) and thrust washer (37).
Note Do not disassemble the anti backlash gear assembly (36) further.
u. Remove retaining ring (71) that secures gear arm (72) and spur gear (73) to stud (74). Remove gear arm (72), spur gear (73), and thrust washer (77).
v. Remove taper pin (62) and setscrew (64) that secure coupler assembly (63) to shaft assembly (75) and remove coupler assembly (63).
w. Remove retaining ring (61) from shaft assembly (75). Remove shaft assembly (75) and thrust washer (76) from housing assembly (59).
x. Remove screw (9), lockwasher (10), and plate (11) that secure thrust washer (19), gear (20), worm (21), and thrust washer (22) to housing assembly (59).
Note Do not disassemble screw (39), yoke (40), and worm (21).
y. Remove screw (28), lockwasher (27), flatwasher (26), and remove housing (25) from housing assembly (59). Remove lamp (24) from housing (25). If bushing (23) is damaged, press it from housing assembly (59).

96. Selector Mechanism Reassembly
 Procedure (fig. 78

In reassembling the gear train, start at
that point in the procedure in which the defective part is replaced.

Caution: Before inserting a taper pin through a gear and a shaft, be sure that the taper pin holes are aligned correctly. Failure to observe this procedure will cause serious damage to the parts.
Note: Make all pinning operations with the dials set at 30.00 mc . Setscrews (8), (15), (47), and (66) are not supplied with the selector mechanism, but are used to secure replacement parts to gear shafts while drilling. After the pinning operations are completed, remove the setscrewe. Setscrews (43) and (64) are supplied with the selector mechanism and are to be replaced in coupler assemblies (44) and (63).
a. When replacing the bushing (2 3), apply locktite (American Sealants, Grade C, or equal) to the outside shank of the bushing (23) and press it into the housing assembly (59).
b. If replacement is required, replace yoke (40), worm (21), screw (39), and gear (20) at one time. Install thrust washer (22) into housing assembly (59). Insert gear (20) and worm (21) into housing assembly (59) with yoke (40) positioned through housing assembly (59). Place thrust washer (19) over gear (20), and secure in place with plate (11), lockwasher (10), and screw (9).
Note: After gear (20) and worm (21) are secured in housing assembly (59), yoke (40) extension should be 0.462 inch ± 0.015. Measure this distance from the centerline of the outer drill hole in the yoke (40) to the casting of the housing assembly (59).
c. Place thrust washer (70) on shaft assembly (69), insert shaft assembly (69) through housing assembly (59) and secure in place with retaining ring (46). Install arm assembly (49) on shaft assembly (69) and secure taper pin (48).
d. Apply locktite (American Sealants, Grade C, or equivalent) to threads of ball plunger (38). Install ball plunger (38) into housing assembly (59); bottom the ball plunger (38) against cam (80) on shaft assembly (69) and then back off ball plunger one-eighth to one-quarter turn.
Note: Before meshing the anti backlash gear assembly (36) with another gear, advance the antibacklash floating gear two teeth, then mesh.
e Place thrust washer (76) on shaft assembly (75). Insert shaft assembly (75) through housing assembly (59) and secure with retaining ring (61). Position coupler
assembly (63) on shaft assembly (75). Align the holes; insert and secure taper pin (62) and setscrew (64).
f. Place thrust washer (77) and spur gear (73) on stud (74) with the gear hub facing away from housing assembly (59). Mount gear arm (72) on stud (74) while obtaining gear mesh between gear arm (72) and shaft assembly (75). Install retaining ring (71) on stud (74) and secure. Check all parts for freedom of operation.
g. Install thrust washer (37) on shaft of antibacklash gear assembly (36), and insert antibacklash gear assembly (36) into housing assembly (59). Install and secure retaining ring (41) on shaft of antibacklash gear assembly (36). Place coupler assembly (44) on shaft of antibacklash gear assembly (36), align the holes, and secure taper pin (42) and setscrew (43).
h. Connect spring (56) to arm assembly (78).
i. Install arm assembly (78) to shaft assembly (57) and secure with retaining ring (79). Install O-rings (55) on shaft as sembly (57).
j. Place sleeve (84) and spring (83) on mask assembly (53). Place sleeve (85) on spring retainer (18).
k. Place mask assemblies (53 and 54) on shaft assembly (57); secure in place with screw (50) and lockwasher (51).
I. Install O-rings (52) on mask assembly (53) and position spring (56) in place on shaft assembly (57). Slide thrust washer (58) on retainer ringside of shaft assembly (57), then position shaft assembly (57) into housing assembly (59) and secure in place with retaining ring (45).
m . Install gear (67) on shaft assembly (69) with hub of gear (67) facing inboard. Insert taper pin (68) and secure gear (67) on shaft assembly (69). Install two O-rings (65) on shaft assembly (69).
n. Place thrust washer (17) on shaft as sembly (16). Insert shaft assembly (16) through housing assembly (59) and mesh gear on shaft assembly (16) with gear segment (81) on shaft assembly (57). Secure shaft assembly (16) in place with retaining ring (1).
Note: During the drilling operation (if required) maintain 0.015 inch end play in shaft assembly (16) and 0.005 inch end play in shaft assembly (30).
o. Position arm assembly (33) on retaining arm (35) and secure in place with retaining ring (34).
p. Install two O-rings (29) on shaft assembly (30). Place thrust washer (31) over retaining ring side of shaft assembly (30).
q. Insert shaft assembly (30) through housing assembly (59) and secure in place with retaining ring (12).
r. Place stop (14) on shaft assembly (30), align the taper-pin holes, and insert and secure taper pin (13).
s. Install one end of spring (32) on arm assembly (33) and the other on spring retainer (18).
t. Place sleeve (2) on shaft assembly (16) and align the taper pin holes. Insert and secure taper pin (7). Place bushing (3) on sleeve (2).
u. Secure spring (6) to housing assembly (59) and arm (4). Position the forked end of arm (4) in bushing (3) and secure arm (4) to housing assembly (59) with pin (5). Crimp over both ends of pin (5).
Note: Upon completion of the above assembly procedures, check all parts for freedom of movement.
v. Place Iamp (24) in housing (25), position housing (25) in bushing (2 3), and secure in place with flat washer (26), lockwasher (27), and screw (28).
w. When replacing spacer (60) into hous ing assembly (59), apply Locktite (American Sealant, Grade C, or equivalent) to threads.
97. Disassembly and Reassembly of Interval Oscillator Module A10 (fig. 79)
a. Disassembly.
(1) Remove two panhead screws (10) and lockwashers (9) that secure cover (8) to header-shield assembly (7). Remove the cover.
(2) Remove retaining ring (16) that secures coupling assembly (1) in header-shield assembly (7) and remove coupling assembly (1).
(3) Remove two screws (2) and two screws (4) that support bearing assemblies (3 and 14) to headershield assembly (7) and remove the two support bearing assemblies.

NOTES:
I. SETSCREWS (8), (15), (47), AND (66) ARE NOT SUPPLIED WITH THE SELECTO MECHANISM, BUT ARE USED TO SECURE REPLACEMENT PARTS TO GEAR SHAFTS WHILE DRILLING. THESE SETSCREWS ARE REMOVED AFTER DRILLING OPERATION IS COMPLETED.
2. SETSCREWS (43) AND (64) ARE SUPPLIED WITH THE SELECTOR MECHANISM AND, F REMOVED, ARE TO BE REPLACED IN COUPLER ASSEMBLIES (44) AND (63).

Figure 78. Selector mechanisrn, exploded view.

(4) Remove four panhead screws (13), four hexagonal nuts (4) and eight washers (12), securing board assemblies (6 and 11) to hea de rshield assembly (7) and remove the two board assemblies.
b. Assembly.
(1) Install board assemblies (6 and 11) on header-shield assembly (7) and secure them with four panhead screws (13), eight lockwashers (5 and 12), and four hexagonal nuts (4).
(2) Install two support bearing assemblies (3 and 14) on header-shield assembly (7) and secure with four panhead screws (2 and 15).
(3) Posit ion coupler assembly (1) through support bearing assemblies (3 and 14). Secure it with retainer ring (16).
(4) Install cover (8) on header-shield assembly (7) and secure it with two panhead screws (10), and lockwashers (9).

This page left blank intentionally.

Figure 79. Module A10, exploded view.

COLOR CODE MARKING FOR MIUTARY STANDARD RESISTORS

COMPOSITION-TYPE RESISTORS

BAND A— Equal Width Band Signifies Composition-Type

WIREWOUND-TYPE RESISTORS

BAND A - Double Width Signifies

COLOR CODE TABLE

BAND A		BAND B		BAND C		BAND D	
COLOR	$\begin{gathered} \text { FIRST } \\ \text { SIGNIFICANT } \\ \text { FIGURE } \end{gathered}$	COLOR	$\begin{aligned} & \text { SECOND } \\ & \text { SIGNIFICANT } \\ & \text { FIGURE } \end{aligned}$	COLOR	MULTIPLIER	COLOR	RESISTANCE TOLERANCE (PERCENT)
BLACK	0	BLACK	0	BLACK	1		
BROWN	1	BROWN	1	BROWN	10		
RED	2	RED	2	RED	100		
ORANGE	3	ORANGE	3	ORANGE	1,000		
YELLOW	4	YELLOW	4	YELIOW	10,000	SIIVER	± 10
Green	5	GrEEN	5	Green	100,000	GOLD	± 5
biue	6	BLUE	3	BIUE	1,000,000		
PURPLE (VIOLET)	7	PURPLE (VIOLET)	7				
Gray	8	GRAY	8	SILVER	0.01		
WHITE	9	WHITE	9	GOLD	0.1		

EXAMPLES OF COLOR CODING

Figure 80. MIL STD resistor color code.

APPENDIX

REFERENCES

TA 11-17
TA 11-100 (11-17)
TM 11-1257
TM 11-5057
TM 11-5097
TM 11-5129
TM 11-5133
TM 11-5551E
TM 11-5820-398-10
TM 11-5820-398-20
TM 11-5820-398-20P
TM 11-5820-398-35P
TM 11-6625-200-12
TM 11-6625-261-12

TM 11-6625-320-12

TM 11-6625-400-12

Signal Field Maintenance Shops
Allowances of Signal Corps Expendable Supplies for Signal Field Maintenance Shops.
Signal Generator AN/URM-48
Frequency Meter AN/USM-26
Spectrum Analyzers TS-723A/U, TS-723B/U, and TS-723C/U
Oscilloscopes AN/USM-50A, B, and C
Radiofrequency Wattmeter AN/URM-43A
R. F. Signal Generator AN/URM-25F

Operator's Manual: Radio Set AN/PRC-25
Organizational Maintenance Manual: Radio Set AN/PRC-25
Organizational Maintenance Repair Parts and Special Tools List: Radio Set AN/PRC-25
Field and Depot Maintenance Repair Parts and Special Tools List: Radio Set AN/PRC-25
Operation and Organizational Maintenance Manual: Multimeters ME-26A/U and ME-26B/U
Operator's and Organizational Maintenance Manual: Audio Oscillators TS-382A/U, TS-382B/U, TS-382D/U, TS-382E/U, and TS-382F/U
Operator's and Organizational Maintenance Manual: Voltmeter, Meter ME-30A/U and Voltmeters, Electronic ME-30 B/U and ME-30C/U
Operator and Organizational Maintenance Manual: Meter, Modulation ME-57/U

A12:
Frequency synthesizer system
second mixer, theory
Isolating trouble
lsolating trouble --------------- 8
Frequency synthesizer system
first mixer, theory
22
Isolating trouble
82
A15:
Isolating trouble
83
23
1-mc spectrum generator,
theory
28
A16:
Isolating trouble
84131
Voltage regulator, theory ------- 30
A17:
Isolating trouble --------------- 85
Phase comparator, theory ------ 28 [33
A18:
Frequency synthesizer system if.
amplifier, theory ----------- 27
Isolating trouble
A19:
Isolating trouble

Quarter-wave network, theory--- 14
A20:
Isolating trouble -------------- 88
Sidestep oscillator:
Alignment
Theory
60
A21:
Isolating trouble
136
A22:
Isolating trouble ------------- $\quad 90 \quad 138$
Speech amplifier-limiter, theory 12 [14
A23:

A24:
Isolating trouble -------------- 92141
Tone squelch, theory ---------
A25:
Isolating trouble
143
Motherboard, synthesizer
Removal54
Replacement -------------------- 42 52
Network, antenna loading, theory ------ $21 \quad 25$
1-mc spectrum generator module A15--- $23 \quad 28$
Oscillator:
A20, alignment -------------------- 45
Interval, module A10, theory ------- 24
Tone, frequency test ------------- 57
Output test, transmitter power
33
Phase comparator module A17 --------- 28
Physical tests and inspection --------- 5
Points, test
69
Power:
Amplifier:
A 29
Circuit, isolating trouble ------- 19
Tank module A2:
Alignment ------------------ 43
Theory
Distribution

24
40

 Output test, transmitter -----------
 | Publications, index | 2 | 3 |
| :---: | :---: | :---: |
| Quarter-wave network, module A19, theory | | |
| Reassembly, selector mechanism ------ 96146 Receiver: | | |
| Audio: | | |
| Amplifier module A25, theory --- | 10 | [12 |
| Output power test ---------- | 61 | 85 |
| Catching range test | 63 | 91 |
| Distortion test | 65 | 99 |
| If. amplifier module A21, theory ---- | 9 | 8 |
| Mixer module A5, theory ---------- | 8 | 8 |
| Sensitivity test | 62 | 87 |
| Receiving signal path, theory --------- 3 | | |
| Regulator, voltage, module A16, theory | 30 | 36 |
| Removal: | | |
| Audio and control chassis A27 ---- | 41 | 54 |
| Front panel | 47 | 61 |
| Selector-mechanism | 48 | 64 |
| Synthesizer motherboard | 42 | 54 |
| Repairs, third echelon, scope --------40 Replacement: 530 | | |
| | | |
| Audio and control chassis A27 | 41 | 54 |
| Front panel | 47 | 61 |
| Selector mechanism | 48 | 64 |
| Synthesizer motherboard | 42 | 54 |
| If amplifier: | | |
| First, module A3, theory Second, module A4, theory | $\underline{6}$ | $\stackrel{7}{78}$ |
| Scope | | |
| Fifth echelon maintenance | 68 | 106 |
| Fourth echelon maintenance | 46 | 61 |
| Manual | 1 | 3 |
| Third echelon: | | |
| Maintenance | 34 | 42 |
| Repairs | 40 | 53 |
| Second: | | |
| Mixer, frequency synthesizer system, module A12, theory | 26 | 30 |
| If amplifier: | | |
| Module A4, theory \qquad Transmitter, module A17, theory | $\sqrt{77}$ | -81 |
| Selector mechanism: | | |
| Disassembly | 95 | 144 |
| Reassembly | 96 | 146 |
| Removal and replacement | 48 | 64 |
| Sensitivity test: | | |
| Receiver | 62 | 87 |
| Squelch | 64 | 95 |
| Sidestep oscillator module A20: | | |
| Alignment | 45 | 60 |
| Theory | 14 | 16 |
| Signal path: | | |
| Receiving, theory | 3 | 4 |
| Transmitting, theory | 3 | 4 |
| Signal plus noise-to-noise ratio, maxi- | | |
| Speech amplifier-limiter module A22 --- | 12 | 14 |
| Squelch sensitivity test ------------- | 64 | 95 |
| Summary of test data | 67 | 105 |
| Synthesizer: | | |
| M otherboard: | | |
| Removal | 42 | 54 |
| Replacement | 42 | 54 |
| System, frequency, theory | 5 | 5 |
| System distortion test | 58 | 75 |

Tank, power amplifier, module A2 ----Test:	20	24
Cables, fabrication	54	68
Data, summary	67	105
Equipment required:		
Fourth echelon	53	67
Third echelo	36	42
Point	32	
Setup	37	44
Testing procedures, fourth echelon,		
general	52	67
Theory:		
Dc-to-dc converter module A1------53-mc filter	31 25	37
First rf amplifier module A3	6	
Frequency synthesizer system		
Discriminator module All ------	29	35
First mixer module A14	22	26
If. amplifier, module A18 ------	27	32
Second mixer module A12------	26	30
Interval oscillator module A10	24	28
1 -mc spectrum generator module		
A 15		8
Phase comparator module A17------	28	33
Power amplifier A29	19	23
Power amplifier tank module A2 ----	20	24
Quarter-wave network module A19--	14	16
Receiver:		
Audio amplifier module A25-----	10	12
If. amplifier module A21-------	9	8
Mixer module A5------------	8	
Receiving signal path	3	
Second rf amplifier module A4 -----	7	
Sidestep oscillator module A20 -----	14	16
Speech amplifier-limiter module A22	12	14
Transmitter:		
First rf amplifier module A8----	16	19
Ipa module A6	18	23
Second rf amplifier module A7	17	22
Transmitting signal path		
Generator module A23	13	16
Squelch module A24	11	12
Variable frequency oscillator module	15	17
Voltage regulator module A16	30	36
Third echelon:		
Additional equipment required	36	42
Isolating troubles-------	38	45
Maintenance, scope	34	42
Repairs, scope-	40	53
Test equipment required	36	42
Test setup -------	37	44
Tone generator module A23, theory ---- 13		16
Tone oscillator frequency test ---------	57	73
Tone squelch module A24, theory ------ 11		12
Tools required, fourth echelon testing procedures \qquad		67
T rans mitt er:		
First rf amplifier module A8, theory	16	19
Modulation test----	57	73
Power output test	56	71
Second rf amplifier module A7,		
Transmitting signal path, theory	4	5
Trouble, isolating in module: A 1	71	106

Official:

J. C. LAMBERT,

Major General, United States Army, The Adjutant General.

Distribution

Active Army:

DASA (6)	Sacramento Army Dep (17)
USASA (2)	Tobyhanna Army Dep (12)
CNGB (1)	Lexington Army Dep (12)
CofEngrs (1)	Ft Worth Army Dep (8)
TSG (1)	WRAMC (1)
CSigO (5)	Trans Tml Cored (1)
CofT (1)	Army Tml (1)
USA CD Agcy (1)	POE (1)
USAATBD (1)	OSA (1)
USC ONARC (5)	AFIP (1)
ARADCOM (2)	AMS (1)
ARADCOM Rgn (2)	Army Pic Cen (2)
OS Maj Cored (3)	USA Mob Spt Cen (1)
OS Base Cored (2)	USA Strat Comm
LOGCOMD (2)	Cored (4)
MDW (1)	USA Elct Mat Agcy (25)
Armies (2)	Chicago Proc Dist (1)
Corps (2)	USARCARIB Sig Agcy (1)
Instl (2) except	Sig FId Maint Shops (3)
Ft Monmouth (63)	USA Corps (3)
USATC AD (2)	J BUSMC (2)
USATC Armor (2)	Units org under fol TOE:
USATC Engr (2)	11-7 (2)
USATC FA (2)	11-16 (2)
USATC Inf (2)	11-57 (2)
USA Mat Comd (5)	11-98 (2)
USA EIct Comd (5)	11-117 (2)
USA Msi Cored (4)	11-155 (2)
Svc Colleges (2)	11-157 (2)
Br Svc Sch (2)	11-500 (AA-AE) (4)
GENDEP (OS) (2)	11-557 (2)
Sig Sec, GENDEP (5)	11-587 (2)
Sig Dep (OS) (12)	11-592 (2)
Army Dep (2) except	11-597 (2)

NG: State AG (3).
USAR: None.
For explanation of abbreviations used, see AR 320-50.

